Problem Description

Given a randomized approximation algorithm $A()$ which returns a 1.5 -approximation of the Minimum Vertex Cover at least 3 out of 4 times when run on a graph. $A()$ has a runtime of $\mathcal{O}\left(|V|^{2}\right)$ where $|V|$ is the number of vertices in the graph. How can this algorithm be used to have a success rate of a least 0.999 while still using $\mathcal{O}\left(|V|^{2}\right)$ time.

Solution

Assuming that the return value of $A()$ is a list of the vertices that would compose the vertex cover, three out of four times the length of this list will be at most 1.5 times the length of a minimum vertex cover, while the remaining one out of four times the length can be of any length of a legitimate vertex cover. One simple approach to maximize that a correct candidate is found is by running $A()$ a multitude of time to get a number of different results and by some heuristic pick one of the obtained results that is most likely to be the 1.5 -approximation of the vertex cover. The success of this is determined by two factors, firstly how many times $A()$ is ran to increase the likelihood that at least on of the results is the 1.5 -approximation, and secondly, what heuristic we use to pick the best approximation out of all the different solutions generated by $A()$.

A simple approach is to store the shortest answer that $A()$ returns after running it multiple times since will always return a vertex cover. This way each time a solution for a graph is given the shortest and thus minimum solution found will be saved and returned at the end of the execution. This would manifest itself in the following pseudocode.

```
Algorithm 1 1.5 Minimum Vertex Cover
    Input: \(G\)
    Output: \(M V C\)
    \(M V C \leftarrow A(G)\)
    for 1 to \(k-1\) do
        \(T E M P \leftarrow A(G)\)
        if TEMP.length \(\leq M C V\).length then
            \(M V C \leftarrow T E M P\)
        end if
    end for
```

The number of loops in the for loop is currently represented by the variable k the value of k will be determined later.

Proof of Correctness

Let Q be the length of a minimal vertex cover for the graph G. The 1.5 Minimum Vertex Cover algorithm is expected to return a 1.5-approximation of the Minimum Vertex Cover (i.e. a vertex cover of length $1.5 Q$) with a probability of at least 0.999 . This can be proved by defining the random variable Y. Let for each run i in the for loop let $Y_{i}=1$ if $A(G)_{i}$.length $\leq 1.5 Q$ and $Y_{i}=0$ otherwise. Since the algorithm picks the minimum result from all the calls to $A()$ if is sufficient to say that if there is a single result $A(G)_{i}$ that has a length less than or equal to $1.5 Q$ the length of the vertex cover that is stored in $M V C$ will also be at most $1.5 Q$ long. This means that if a single Y_{i} is equal to 1 a vertex cover with a length less than or equal to $1.5 Q$ is stored in $M V C$.

Let $Y_{\text {avg }}$ be the average of all $Y_{1} \ldots Y_{k}$, then the expected value of $Y_{\text {avg }}$ will be $E\left[Y_{\text {avg }}\right]=1 \times \frac{3}{4}+0 \times \frac{1}{4}=$ 0.75. If the average of $Y_{a v g}$ is greater than 0 , it means that there is at least a single $Y_{i}=1$ and thus $M C V$ is length $1.5 Q$ or less. Thus the Chernoff bound can be used to calculate the probability of $Y_{a v g}>0$.

$$
\operatorname{Pr}\left[Y_{a v g}<E\left[Y_{a v g}\right]-\epsilon\right] \leq e^{-2 k \epsilon^{2}}
$$

Since we want to find the probability of $Y_{\text {avg }}$ being greater than 0 we let $\epsilon=E\left[Y_{\text {avg }}\right]=0.75$. To avoid any conflicts with limit of when $Y_{\text {avg }}=0$ we give can instead find when $Y_{\text {avg }}>0.05$ since $Y_{\text {avg }}>0.05>0$. This implies that $\epsilon=0.70$ yielding us the final equation.

$$
\operatorname{Pr}\left[Y_{a v g}<0.05\right] \leq e^{-2 k \times 0.7^{2}}
$$

For $k=10$ this yields 0.0000555 So in this scenario the probability that $Y_{\text {avg }}<0.05$ is very small, in other words is is very likely that $Y_{a v g}>0.05$ meaning that the probability of at least one $Y_{i}=1$ is $\operatorname{Pr}\left[\exists Y_{i}=1\right]>1-0.0000555=0.9999$. In summary, the algorithm has a probability of more than 0.999 that there will be a $Y_{i}=1$ which implies that $M V C$ is a vertex cover of length less than or equal to $1.5 Q$ when $k=10$. Thus $M V C$ is a vertex cover of size $\leq 1.5 \mathrm{~m}$ where m is the size of a minimum vertex cover with probability of at least 0.999.

Complexity of 1.5 Minimum Vertex Cover

The algorithm $A()$ will be run k times, once on line 1 and then $k-1$ times in the for loop, this is $\mathcal{O}\left(k|V|^{2}\right)$. On line 4 in the for loop the length of $T E M P$ and $M C V$ is checked, if they are implemented as lists this operation takes at worst $|V|$ steps since the vertex cover can at worst include each vertex. Resulting in $\mathcal{O}(k|V|)$. The assignment on line 5 can be assumed to take constant time with some clever pointer arithmetic. In summary the Complexity of the algorithm as a whole is $\mathcal{O}\left(k|V|^{2}+k|V|\right)=\mathcal{O}\left(|V|^{2}\right)$

