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Problem Description

Given a randomized approximation algorithm A() which returns a 1.5-approximation of the Minimum
Vertex Cover at least 3 out of 4 times when run on a graph. A() has a runtime of O(|V |2) where |V | is
the number of vertices in the graph. How can this algorithm be used to have a success rate of a least
0.999 while still using O(|V |2) time.

Solution

Assuming that the return value of A() is a list of the vertices that would compose the vertex cover,
three out of four times the length of this list will be at most 1.5 times the length of a minimum vertex
cover, while the remaining one out of four times the length can be of any length of a legitimate vertex
cover. One simple approach to maximize that a correct candidate is found is by running A() a multi-
tude of time to get a number of different results and by some heuristic pick one of the obtained results
that is most likely to be the 1.5-approximation of the vertex cover. The success of this is determined
by two factors, firstly how many times A() is ran to increase the likelihood that at least on of the
results is the 1.5-approximation, and secondly, what heuristic we use to pick the best approximation
out of all the different solutions generated by A().

A simple approach is to store the shortest answer that A() returns after running it multiple times
since will always return a vertex cover. This way each time a solution for a graph is given the shortest
and thus minimum solution found will be saved and returned at the end of the execution. This would
manifest itself in the following pseudocode.

Algorithm 1 1.5 Minimum Vertex Cover

Input: G
Output: MVC

1: MVC ← A(G)
2: for 1 to k − 1 do
3: TEMP ← A(G)
4: if TEMP.length ≤MCV.length then
5: MVC ← TEMP
6: end if
7: end for

The number of loops in the for loop is currently represented by the variable k the value of k will be
determined later.

Proof of Correctness

Let Q be the length of a minimal vertex cover for the graph G. The 1.5 Minimum Vertex Cover
algorithm is expected to return a 1.5-approximation of the Minimum Vertex Cover (i.e. a vertex cover
of length 1.5Q) with a probability of at least 0.999. This can be proved by defining the random variable
Y . Let for each run i in the for loop let Yi = 1 if A(G)i.length ≤ 1.5Q and Yi = 0 otherwise. Since
the algorithm picks the minimum result from all the calls to A() if is sufficient to say that if there is
a single result A(G)i that has a length less than or equal to 1.5Q the length of the vertex cover that
is stored in MVC will also be at most 1.5Q long. This means that if a single Yi is equal to 1 a vertex
cover with a length less than or equal to 1.5Q is stored in MVC.
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Let Yavg be the average of all Y1...Yk, then the expected value of Yavg will be E[Yavg] = 1× 3
4 +0× 1

4 =
0.75. If the average of Yavg is greater than 0, it means that there is at least a single Yi = 1 and thus
MCV is length 1.5Q or less. Thus the Chernoff bound can be used to calculate the probability of
Yavg > 0.

Pr[Yavg < E[Yavg]− ε] ≤ e−2kε2

Since we want to find the probability of Yavg being greater than 0 we let ε = E[Yavg] = 0.75. To
avoid any conflicts with limit of when Yavg = 0 we give can instead find when Yavg > 0.05 since
Yavg > 0.05 > 0. This implies that ε = 0.70 yielding us the final equation.

Pr[Yavg < 0.05] ≤ e−2k×0.72

For k = 10 this yields 0.0000555 So in this scenario the probability that Yavg < 0.05 is very small,
in other words is is very likely that Yavg > 0.05 meaning that the probability of at least one Yi = 1
is Pr[∃Yi = 1] > 1 − 0.0000555 = 0.9999. In summary, the algorithm has a probability of more than
0.999 that there will be a Yi = 1 which implies that MVC is a vertex cover of length less than or
equal to 1.5Q when k = 10. Thus MVC is a vertex cover of size ≤ 1.5m where m is the size of a
minimum vertex cover with probability of at least 0.999.

Complexity of 1.5 Minimum Vertex Cover

The algorithm A() will be run k times, once on line 1 and then k − 1 times in the for loop, this
is O(k|V |2). On line 4 in the for loop the length of TEMP and MCV is checked, if they are
implemented as lists this operation takes at worst |V | steps since the vertex cover can at worst include
each vertex. Resulting in O(k|V |). The assignment on line 5 can be assumed to take constant time
with some clever pointer arithmetic. In summary the Complexity of the algorithm as a whole is
O(k|V |2 + k|V |) = O(|V |2)
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