
DD2350 Advanced Algorithms
Individual Assignment 2

E-Question Isak Nyberg
December 1, 2022

Problem Description

Given a list of positive integers L = a1, a2, · · · , an with maxL = 10n where n is the length of the list.
Sort the list L in linear time.

Counting Sort

Given that the maximum value of the list is only a multiple of n a simple linear sorting algorithm
such as counting sort can be used.

Algorithm

Create a list with zeroes for each possible value of the elements in the list and fill each index with the
number of instances from elements of the list. In the end reconstruct the list in a sorted fashion using
the counting list.

Algorithm 1 Counting Sort

Input: L

1: n← L.length
2: count← {0, 10n. . ., 0} // fill an array of length 10n with zeroes
3: for e ∈ L do
4: count[e]← count[e] + 1
5: end for
6:

7: for i ∈ 2 to 10× n do // for i from 2 (inclusive) to 10n (inclusive)
8: count[i]← count[i] + count[i− 1]
9: end for

10:

11: res← [n] // Set res to array of length n
12: for e ∈ L.reverse() do
13: res[count[e]]← e
14: count[e]← count[e]− 1
15: end for
16: return res

This implements counting sort, the first for loop will increment the index in the array for each
instance of a number in input list. For example if there are seventeen different fours in the list L the
value of count at index four will be seventeen. count[4] = 17. (This assumes that the array count
is indexed from 1.) When this is done the array is iterated over and for each index the number of
elements corresponding to the value at that index is added to the list res, so for example when the
index 4 is reached the number 4 will be appended to res 17 times.

1



DD2350 Advanced Algorithms
Individual Assignment 2

E-Question Isak Nyberg
December 1, 2022

Proof of Correctness

The two first for loops are rather trivial, the first one will count the number of instances of a number
for every index less than or equal to 10n. The second for will just make the list accumulated, so that
instead of each index being the number of instances of that number, instead it will be the number
of instances of that number or less. The third for loop on line 12 is the more interesting one. An
invariant is that for each element e that has been seen in L it will have been placed in the correct spot
in res. This is achieved by the initial lookup from count[e] which find out what the spot the element
should be in since it knows how many elements that are less than or equal to e, thereafter it is places
in the appropriate position in line 13. Line 14 also decrements count[e] since there is now one less
element less that or equal to e

Space Complexity

There are two relevant uses of memory, the first is the array count and the second is res. Count is
defined to be of size 10n and res of size n. From this it can be determined that the space complexity
is linear O(n) with respect to the size of the input.

Time Complexity

Thankfully we know the maximum element of L is less than or equal to ten times the length of L.
This means that the count array size only needs to be that size. Initializing the array count will run in
10n times. The for loop on line 3 will trivially run 10n times, same for the second for on line 7. The
third for loop on line 12 will also trivially run n times. Thus the time complexity of the algorithm as
a whole is

O(n + 10n + n) = O(n)

which is linear.

2


