Problem Description

Given a stream of positive integers $S=a_{1}, a_{2}, \cdots a_{m}$ with $\max (S) \leq n$. Compute the geometric mean of S using $\mathcal{O}(\operatorname{polylog}(n)+\operatorname{polylog}(m))$ memory.

Problem Simplification

A very useful property of the geometric mean is that it is the arithmetic mean of S in \log-scale. In other words it has a homomorphic relationship with the arithmetic mean. Mathematically expressed as:

$$
\text { Geometric } \operatorname{Mean}\left(a_{1}, a_{2}, \cdots a_{m}\right)=\exp \left(\frac{1}{m} \sum_{i=1}^{m} \ln \left(a_{i}\right)\right)
$$

This is important since we do not need to keep track of the product of the element in S down the stream, but rather we need to keep track of the sum of the natural log of the elements, which is much smaller.

Algorithm

Using the above simplification, an algorithm can be used to find the arithmetic sum of the elements of S and when the stream is finished (or at any point in the stream) the geometric mean can be calculated by using the EXP function of the sum divided by the number of elements seen in the stream.

```
Algorithm 1 Geometric Mean
    Input: \(S\)
    sum \(\leftarrow 0\)
    seen \(\leftarrow 0\)
    for \(a \in S\) do
        sum \(\leftarrow \ln (a)+\) sum
        seen \(\leftarrow\) seen +1
    end for
    res \(\leftarrow \exp \left(\frac{\text { sum }}{\text { seen }}\right)\)
    return res
```


Proof of Correctness

An invariant α in the code is that seen $=\#$ elments $\wedge \operatorname{sum}=\sum_{i=1}^{\text {seen }} \ln \left(a_{i}\right)$ this is trivially true before the loop, then in the for loop the number of elements increase by one and so does the value of seen on line 5. The current value of sum is also increased by a which in this case is $a_{\text {seen }}$, in terms of the sequence $S=a_{1}, \cdots a_{\text {seen }}, \cdots a_{m}$. As a result α is true through the entire for loop. This means that after the for every element has been seen and thus seen $=m$ and hence the value of sum is $\sum_{i=1}^{m} \ln \left(a_{i}\right)$. Putting this in the simplification earlier we get that

$$
\text { Geometric Mean }=\exp \left(\frac{\text { sum }}{\text { seen }}\right)
$$

Which is the value that is returned on line 8. It is also to note that all elements $a \in S$ are positive so $\ln (a)$ will always be defined.

Space Complexity

Given that the stream a stream of positive integers $S=a_{1}, a_{2}, \cdots a_{m}$ with $\max (S) \leq n$. The worst case for this algorithm is when every element in the stream is equal to n, i.e. the stream of m elements with the value n.
In this case the value of sum would be $m \cdot \ln (n)$. This is in the order of $\mathcal{O}(\log (m \cdot \ln (n)))=$ $\mathcal{O}(\log (m)+\log (\ln (n)))$ space.
The value of res would trivially be res $\leq n$, since the geometric mean cannot be greater than the largest element in the stream, and thus use $\mathcal{O}(\log (n))$ memory.
The value of seen will be equal to M and use $\mathcal{O}(\log (m))$ memory.
In total the memory used will be thus be the sum of all these

$$
\mathcal{O}(\log (m)+\log (\ln (n))+\log (n)+\log (m))=\mathcal{O}(\log (m)+\log (n))
$$

