
Degree Project in Technology

First cycle, 15 credits

All quiet on the front-end?
Scanning websites for known dependency vulnerabilities

ISAK NYBERG

Stockholm, Sweden, 2023

I





All quiet on the front-end?

Scanning websites for known dependency
vulnerabilities

ISAK NYBERG

Degree Programme in Information and Communication Technology
Date: September 7, 2023

Supervisor:
Examiner:

School of Electrical Engineering and Computer Science
Host company:
Swedish title: På webbfronten intet nytt
Swedish subtitle: Skanning av webbsidor efter kända sårbarheter i beroenden



© 2023 and Isak Nyberg



Abstract | i

Abstract

As web applications become increasingly complex, the use of third-
party libraries becomes increasingly prevalent. Dependence on third-party
libraries can put the user of these web applications at risk if vulnerabilities
exist in the dependent-upon library. From an IT operations perspective,
gaining an overview of the dependencies a website uses– and any eventual
vulnerabilities– is di�cult. The front-end programming language JavaScript
has a vast ecosystem of libraries and is not immune to this issue, coining
terms such as dependency hell. Corporations and agencies that work with
these ecosystems have substantial risks of being exposed to cyber-attacks if
they have security vulnerabilities in their dependencies. As a result, there is a
demand for tools that give insight and can detect these vulnerabilities before
they are exploited by an adversary. The current academic research has not yet
explored non-intrusive methods by which libraries that contain vulnerabilities
can be discovered and addressed ahead of time. In this thesis, we research
the current solutions and the methods used for discovering dependencies and
vulnerabilities from a front-end client perspective. We develop a product that
discovers dependencies by searching for license information in several places
using di�erent heuristics to discover library names and corresponding version
numbers. We create an automated vulnerability scanner whose database and
execution does not leave the host machine, in order to prevent third parties from
accessing information about potential vulnerabilities. Testing our product
together with the other discovered solutions on 14 websites, we show how
our choices of methods and implementation are, in some metrics, superior to
the solutions researched. Our implementation detected on average 23% more
dependencies than the baseline. We also discuss which steps can be taken and
which other methods can be used to improve the field further.

Keywords

Third-party libraries, Vulnerability scanning, Dependencies analysis, Web-
security, Front-end dependencies



ii | Abstract



Sammanfattning | iii

Sammanfattning

I samma takt som webbapplikationer ökar i komplexitet ökar också
användningen av tredjepartsbibliotek. En webbapplikation beroende på
tredjepartsbibliotek riskerar användarens säkerhet ifall sårbarheter existerar i
biblioteken. För personer som arbetar med drift av webbservrar är det svårt
att få en översikt av de beroenden och eventuella sårbarheter som används av
ens servers webbapplikationer. Front-end programmeringsspråket JavaScript
har ett enormt ekosystem av kodbibliotek som är hårt drabbat av just detta
problem, till den grad att detta problem beträ�ande JavaScript har fått namnet
dependency hell– beroendehelvetet. Som en direkt följd av detta problem
riskerar organisationer och företag som arbetar med dessa ekosystem att bli
utsatta för cyberattacker. Ett resultat av detta är ett stort behov av verktyg
som ger insikt i applikationens komposition och som kan upptäcka eventuella
sårbarheter. Existerande akademisk forskning har inte än fullt utforskat icke-
intrusiva metoder för att upptäcka beroende som innehåller sårbarheter från
ett användarperspektiv. I denna rapport undersöker vi befintliga lösningar och
metoder som används för att, från ett användarperspektiv, hitta vilka beroende
och sårbarheter en applikation innehåller. Vi utvecklade en produkt som kan
hitta beroenden i en applikation genom att, med en heuristisk metod, härleda
bibliotekens namn och tillhörande versionsnummer från licensinformation
inuti applikationen tillika filnamn. I denna produkt har vi integrerat en
sårbarhetsskanner med en lokal sårbarhetsdatabas vars exekvering sker
helt lokalt, för att förhindra att information om sårbarheter hanteras av
utomstående. Genom att testa vår produkt och existerande lösningarna mot 14
webbsidor visar vi hur våra val av metoder och vår implementation kan hitta
23% mer beroenden än de andra testade lösningarna. Vi diskuterar också vad
som kan göras för vidareutveckling av produkten och forskning inom området.

Nyckelord

Tredjepartsbibliotek, Sårbarhetssökning, Beroendeanalys, Webbsäkerhet, Front-
end beroenden



iv | Sammanfattning



Zusammenfassung | v

Zusammenfassung

Mit der zunehmenden Komplexität von Webanwendungen wird die Verwen-
dung von Drittanbieter-Bibliotheken immer üblicher. Die Abhängigkeit von
Drittanbieter-Bibliotheken setzt den Benutzer einem Risiko aus, wenn in der
abhängigen Bibliothek Sicherheitsluken vorhanden sind. Aus der Sicht des
IT-Betriebs ist es schwierig, einen Überblick über die Abhängigkeiten - und
eventuelle Sicherheitsluken - einer Website zu erhalten.

Die Programmiersprache JavaScript hat ein großes Bibliothekökosystem
und ist nicht immun zu dieses Problem, was zu die Begri�e Dependency
Hell- Abhängigkeitshölle geführt hat. Unternehmen, die mit JavaScript und
diesenÖkosystemen arbeiten, haben ein erhebliches Risiko, Cyberangri�en
ausgesetzt zu werden, wenn sie Sicherheitslücken in ihren Abhängigkeiten
haben. Daher besteht ein Bedarf an Werkzeuge, die einen Einblick in
diese Sicherheitsluke geben und sie aufdecken können, bevor sie von einem
Angreifer ausgenutzt werden. Die aktuelle akademische Forschung hat noch
keine nicht-intrusiven Methoden erforscht, mit denen Bibliotheken, die
Sicherheitsluken enthalten, entdeckt und vorzeitig behoben werden können.

In dieser Arbeit untersuchen wir die aktuellen Lösungen und die
Methoden, die für die Entdeckung von Abhängigkeiten und Sicherheitsluken
aus der Sicht des Front-End-Benutzers verwendet werden. Wir entwickeln ein
Produkt, das Abhängigkeiten entdeckt, indem es an mehreren Stellen nach
Lizenzinformationen sucht und dabei verschiedene Heuristiken verwendet,
um Bibliotheksnamen und entsprechende Versionsnummern zu ermitteln. Wir
erstellen einen automatisierten Sicherheits-Scanner, dessen Datenbank und
Ausführung den Host-Rechner nicht verlässt, um zu verhindern, dass Dritte
auf Informationen über potenzielle Sicherheitsluken zugreifen können.

Indem wir unser Produkt zusammen mit den anderen entdeckten Lösungen
auf 14 Websites testen, zeigen wir, dass die von uns gewählten Methoden
und unsere Implementierung den untersuchten Lösungen in einigen Punkten
überlegen sind. Unsere Implementierung entdeckte 23% mehr Abhängigkeiten
mehr als die anderen getesteten Lösungen. Wir diskutieren auch, welche
Schritte unternommen werden können und welche anderen Methoden
verwendet werden können, um das Feld weiter zu verbessern.

Schlüsselwörter

Drittanbieter-Bibliotheken, Sicherheits-Scanning, Abhängigkeitsanalyse, Web-
Sicherheit, Frontend-Abhängigkeiten



vi | Zusammenfassung



Zusammenfassung | vii



viii | Zusammenfassung



Contents | ix

Contents

1 Introduction 3
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Original problem and definition . . . . . . . . . . . . 5
1.1.2 Research question . . . . . . . . . . . . . . . . . . . . 5

1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Ethics & sustainability . . . . . . . . . . . . . . . . . . . . . 6
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . 7
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 JavaScript & Hypertext markup language . . . . . . . . . . . 9
2.2 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 JavaScript Libraries . . . . . . . . . . . . . . . . . . 9
2.2.2 Loading dependencies . . . . . . . . . . . . . . . . . 10

2.3 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Vulnerability databases . . . . . . . . . . . . . . . . . 11

2.4 Scraping & Crawling . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Existing solutions for detecting dependencies . . . . . . . . . 13

2.5.1 Trust and Demand for Solutions . . . . . . . . . . . . 14

3 Methods 15
3.1 Research process . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Pre-Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Requirement Specifications . . . . . . . . . . . . . . . . . . . 16
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 17



x | Contents

4 Design 19
4.1 Web scarping & crawling . . . . . . . . . . . . . . . . . . . . 19
4.2 The Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Library detection . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 File name . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Comments in Code . . . . . . . . . . . . . . . . . . . 21
4.3.3 Keywords in Code . . . . . . . . . . . . . . . . . . . 22
4.3.4 Comparing File Hashes . . . . . . . . . . . . . . . . . 23
4.3.5 License . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.6 Map files . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.7 Version Extracting . . . . . . . . . . . . . . . . . . . 24

4.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Results and Analysis 29
5.1 Comparison of Found Dependencies . . . . . . . . . . . . . . 29
5.2 Performance of di�erent methods . . . . . . . . . . . . . . . . 30
5.3 Found vulnerabilities . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Reliability of Data . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusions and Future Work 35
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 39

A Implementation Comparisons 43



List of Figures | xi

List of Figures

4.1 Protocol of link crawler . . . . . . . . . . . . . . . . . . . . . 20
4.2 trie constructed from composite names of react packages, the

full path to a bold font entry represents an existing package name 25

5.1 Percentage of dependencies found by each solution for each
scanned website . . . . . . . . . . . . . . . . . . . . . . . . . 30



xii | List of Figures



List of Tables | xiii

List of Tables

5.1 Di�erent type of finding depending on method used . . . . . . 31
5.2 Highest severity of found vulnerabilities, for each dependency

and website . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1 Found dependencies on each website, per product . . . . . . . 43



xiv | List of Tables



List of acronyms and abbreviations | xv

List of acronyms and abbreviations

API application programmer interface

CDN content delivery network
CSS Cascading Style Sheets
CVE common vulnerabilities and exposures

GAD GitHub Advisory Database

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol

JSON JavaScript object notation

MIT Massachusetts Institute of Technology

NLP natural language processing
NPM Node Package Manager
NVD National Vulnerability Database

OWASP Open Web Application Security Project

SQL Structured Query Language

URL uniform resource locator

WASM WebAssembly

XSS cross-site scripting



xvi | List of acronyms and abbreviations



List of acronyms and abbreviations | 1



2 | List of acronyms and abbreviations



Introduction | 3

Chapter 1

Introduction

In today’s digital world, investment in cyber-security becomes increasingly
essential as cyber-threats increase in frequency and sophistication. The
reliance on digital solutions can be so extensive that a ransomware attack can
entirely disrupt the operations of a large grocery store chain[1]. This threat
is apparent to individuals, companies, and governments alike. As a result,
necessary steps must be taken to protect information and systems against
cyber-attacks from adversaries, whether malicious individuals or foreign
governments. The leaking of personal information and disruption of services
can have a cost on the order of millions of dollars, making proactive e�orts to
minimize the risk of breaches a wise investment[2].

Despite the significant investments made into cyber-security, the sheer
number of attack vectors that exist and are utilized by attackers today makes it
increasingly complex for defenders to get an overview of the scale and type of
their environments’ vulnerabilities. Additionally, as software gets increasingly
complex, third-party libraries become more prevalent in many aspects of
software development[3]. This helps developers by saving time and e�ort
in developing certain functionalities that a third party has already developed.
However, using third-party libraries creates dependencies that might lead to
vulnerabilities in the developed product, as any vulnerability present in a third-
part library or other library that a particular library depends on will propagate
to the final product[4]. It is time and resource-consuming for developers to
manually investigate their dependencies and find any potential vulnerability.

There are a number to underlying technologies in front-end applications.
The most popular of these is the scripting language JavaScript which is, among
its various use cases, commonly used in websites and web apps. However, this
frequent use also makes it a common attack surface on the web. JavaScript



4 | Introduction

developers commonly use public packages and libraries written by third parties
with the help of package managers like Node Package Manager (NPM). This
product makes more than a million packages available to developers. Every
package has the potential risk of containing vulnerabilities.

There exist several known vulnerabilities that are common in front-end
JavaScript code. Cross-site scripting (XSS), for example, is an exploit that
enables an attacker to send code to another end-user of the website, code that
is then executed in the victim’s browser. As many of these vulnerabilities
have already been discovered and often patched, developers can mitigate or
remove these vulnerabilities by simply updating or making slight alterations
to the code. Updating dependencies would be a trivial solution were it not
for the complex task for developers or IT personnel to find and verify the
integrity of the website’s dependencies[5]. Such a task consumes a lot of
manpower and resources to do, especially since new vulnerabilities are found
continuously, which calls for the need for dependencies to be updated. A
previous paper has shown that the portion of users that update their software
decays exponentially over time[6]. This paper also found that it takes slightly
less than three and a half years for 95% of users to adopt a new Android update
after a vulnerability was fixed. Websites in particular possess an inherent risk
since they usually serve as an interface between an end-user and a back-end
system. This means that a user with some technical knowledge can see both the
code running locally on the website and information sent from their browser
to the back-end, giving an attacker considerably more insight than with any
compiled application. As a result, ensuring there are as few vulnerabilities and
attack vectors as possible is particularly important. One of these vectors is the
possibility of vulnerabilities arising from outdated dependencies in front-end
web code. Previous studies have found that 37% of popular websites contain at
least one dependency with a known vulnerability[7]. Two reasons for why this
number is so high are firstly that the website administrators are not updating
their dependencies versions where these vulnerabilities have been patched.
Alternatively, its developers may have abandoned the dependency, and the
vulnerability has never been addressed.

1.1 Problem

As web applications become more and more complex, so does the code that
drives these applications. With the possibility of inherent vulnerability flaws
in libraries, IT personnel must spend much of their time researching libraries
used in applications if they want to create a secure web environment for their



Introduction | 5

company and its users. Organizations dealing with sensitive data often have
restrictions on which products they use; for example, some organizations
might not see it appropriate to use cloud-based, proprietary software when
securing their web environments. For organizations that require a secure
web environment and a good overview of front-end web dependencies, what
methods may be used to create software that automatically performs the task
of dependency checking a website from a front-end client perspective and,
with the methods discovered, how does this product compare to others on the
market?

1.1.1 Original problem and definition

Constructing an automated front-end vulnerability scanner of JavaScript
library dependencies used in websites, using only a local database of known
vulnerabilities.

1.1.2 Research question

What methods can be used and what methods are used when detecting the
presence of libraries in front-end code? How can these be checked for known
vulnerabilities and, how can these methods be implemented e�ectively with a
local database?

1.2 Purpose

The project also aims to increase knowledge of the methods involved and
practices used when scanning for dependencies and vulnerabilities in source
code as well as– with a comparison between current solutions on the market
and our local database scanner– explain the key advantages and disadvantages
with these methods and practices.

We hope that our project increases knowledge of cyber-security, which
will benefit not only the recipients of this knowledge but contributes to the
recipient’s consideration of vulnerabilities arising from dependencies on third-
party libraries. Furthermore, this consideration will lead to more secure web
applications, resulting in fewer security breaches and leakage of sensitive data.
This would benefit all users of such applications.



6 | Introduction

1.3 Ethics & sustainability

This report’s information may be used for malicious and benign purposes.
Malicious use of the information in this thesis may increase security breaches,
possibly leading to an increase in leakage of sensible data, damaging not only
the a�ected product owners but also the users. However, the information
from this report can serve a benign purpose by creating methods by which
developers and clients can verify the integrity of their own code and
dependencies to prevent security breaches before they happen.

From a sustainability perspective, these breaches can cause both social
and economic harm to the individuals a�ected. Social harm could come from
data leaks that reveal individuals marital status or other protected information,
while economic harm can come from monetary loss due to cyber-theft. There
is also a distinct positive e�ect on economical sustainability, as the product
may prevent data breaches or exploits which are not only costly for the users
but for the organization hosting the website. We see no ecological benefit
of our work, on the contrary, the only clear impact on ecology is the energy
consumption of the product and the demand this product may induce on
hardware, whose production is both costly, energy consuming and has a
distinct negative ecological impact [8].

1.4 Goals

This project aims to give developers a tool that will automate the process of
finding vulnerabilities in their front-end dependencies without the need for
third-party tools. This tool comes in the form of a vulnerability scanner that
runs on-premise with a local database. The research process is documented,
and the steps taken are discussed in this thesis. The project has been divided
into the following three sub-goals:

1. Examine current academic and commercial solutions for vulnerability
scanning in the areas selected by the product owner

2. Create a working vulnerability scanner that satisfies the requirements of
the product owner

3. Deliver a report on current scanning methods for dependencies and
vulnerabilities, as well as a comparison of our product to current
commercial solutions



Introduction | 7

1.5 Research Methodology

First, a literature study on the subject was conducted. We aimed to discover the
current solutions and methods for detecting dependencies in front-end code
and to discover what databases are used, what information they contain and
how, and from what sources they are built. We chose three existing solutions
based on their popularity and source code availability and researched how they
function and satisfy our requirement specification.

The project initially collected requirements for the vulnerability scanner.
These requirements have measurable outcomes and were used evaluated
continuously to evaluate the product iteratively.

These requirements include the accuracy and precision of the vulnerability
scanner, the criterion found in the literature study, and the requirements
from stakeholders. In addition, existing solutions found in the pre-study are
evaluated against the same criteria. Finally, this evaluation is compared and
acts as the final results and conclusion of the paper to establish which solution
is ultimately the better-suited one.

1.6 Delimitations

The thesis only concerns itself with vulnerabilities in websites. Methods
for finding these in other interfaces, such as public application programmer
interface (API)s, servers, and other protocols, are not mentioned in this thesis.
Additionally, the thesis does not discuss processes to find new vulnerabilities.
Instead, it focuses on discovering known vulnerabilities that are still in use by
a website. There is also some focus on the surrounding system that creates
this functionality, such as databases to index the vulnerabilities, how these
vulnerabilities are collected and how this information have been accessed in
the first place.

1.7 Structure of the thesis

The thesis is divided into multiple chapters. Chapter 2 discusses the current
state of web security, the current solutions, the current problems and threats,
and what possible approaches already exist to combat them. Chapter 3
explains how we approach the project and what research techniques are used
for both the search for information and the development. Chapter 4 focuses on
the implementation, explaining what our final product looks like and how it can



8 | Introduction

be reproduced. Chapter 5 presents the product performance evaluation related
to the requirement specification and comparisons to existing solutions found
in the pre-study. This Chapter also includes a discussion. Finally, in Chapter
6, we conclude the thesis results and discuss future works on the subject.



Background | 9

Chapter 2

Background

This chapter focuses on the current state of computer security regarding
webpage security. This includes how websites work, how dependencies are
loaded and possible ways to find out the dependency version and potential
vulnerabilities.

2.1 JavaScript & Hypertext markup language

HyperText Markup Language (HTML) is a simple markup language used to
create hypertext documents, text documents that, by hyperlinks, are connected
to other texts. JavaScript is a scripting language designed for and mainly used
in web browsers to add dynamic functionality to websites by responding to
user-initiated events and changing a website’s content[9].

2.2 Dependencies

When developing software, it is often beneficial to reuse code already
produced by another party. Already developed code packages or libraries
consist of either open source code that is included directly in one’s source code
or is included at runtime dynamically. Software using a third-party library is,
in most cases, dependent on it for full functionality.

2.2.1 JavaScript Libraries

JavaScript is an interpreted language and has, like any other programming
language, the ability to reuse code in the form of libraries. However, JavaScript
has no o�cial repository of libraries. However, services such as NPM exist–



10 | Background

a repository with over a million packages. When developing a JavaScript
application, developers can use services such as NPM to automatically
download and resolve dependencies and package the complete application,
including dependencies.

2.2.2 Loading dependencies

A website that relies on dependencies such as code libraries, scripts, or style
sheets can load these dependencies from external sources in several ways.
This can be done either through tags in the HTML or CSS or with calls in
the JavaScript code executed in the browser. This allows developers to save
time by importing work from other places. Once the browser has fetched these
files, they can be parsed according to their file type and include the web page’s
functionality. The code that is retrived is usually loaded in plain text. This
fetching can be done when the page initially loads or when the pages are
loaded asynchronously, and the dependencies may load after the web page
has been used for some time, as some features are only loaded if the user
decides to use or click on them. One example could be images that only are
loaded after the user clicks on a button to view the image. This facilitates a
faster initial loading of the web page to improve the user experience and is
an essential part of a website’s functions from a client perspective. However,
since there are numerous ways to load dependencies, each of these would need
to be accounted for when a web scraper or crawler is used to find them.

The most common way of including a library is <script> HTML tag,
that uses an argument to point to a file hosted either on the same server or
on a library hosted remotely. When these files are hosted externally, they are
commonly hosted with a content delivery network (CDN), that collects many
di�erent libraries; this allows libraries to be cached by the browser if the same
library is used across many web pages. It also allows the client to load the
library from a geographically closer server to the user to speed up and improve
the user experience. In this scenario, it is relatively easy to find what library
is sourced and what is specific to the website.

It is common for these files to have gone through a process called
minification that attempts to cut the file size as much as possible without
changing the execution behaviour. For example, removing white spaces or
making variable names shorter.



Background | 11

2.3 Vulnerabilities

Websites work by executing code and files that the web browser fetches. This
includes loading text and images and executing code that allows for animations
and more advanced website features. This is, of course, useful for developers
since it allows them to improve the experience for the end-user; however,
unfortunately, this can also be exploited by adversaries that misuse this liberal
treatment of websites. Instead, harmful code can be sent to and executed by a
web browser to extract information or execute nefarious code on an unknowing
individual’s machine. While the service provider cannot ensure the safety of
the client’s machine, they can and should address vulnerabilities in their code
that could expose the server or client to vulnerabilities.

One common vulnerability is cross-site scripting (XSS), which arises from
insu�cient sanitation in website inputs, allowing an adversary to inject their
own JavaScript into a browser of a targeted individual or organization. In
addition, XSS can be instigated when a website allows external users to publish
content, but also through more innocuous ways, which may not be apparent to
the programmer or website user.

2.3.1 Vulnerability databases

There exists several public databases contain information on existing
vulnerabilities in libraries and software. The most popular are Mitre CVE,
CVE details and the US NVD [10][11][12]. A vulnerability database provides
information on particular vulnerabilities, vulnerability type, severity, what
software they a�ect and what version range(s) are a�ected. Di�erent databases
provide di�erent interfaces. In the above examples, Mitre provides a web
search and a downloadable file, CVE details provide only a web-search
interface, and NVD provides an API.

2.4 Scraping & Crawling

When an individual views a website, it is interpreted and displayed by a
web browser. For a computer program however, displaying the website is
unnecessary; it can simply read the plain HTML use that code to carry
out automated tasks. These tasks can involve collecting information, saving
images or any other task that would be ine�cient for a human to undertake.
A crawler is a sub-section of scrapers that also have the ability to traverse
between web pages through hyperlinks and other means. This is useful for



12 | Background

scraping multiple similar web pages connected to each other. However, the
terms are somewhat interchangeable. Search engines such as Google rely on
crawling to find and index websites, which are then made searchable by the
search engine; it is also common practice when automating data collection to
crawl websites and scrape for particular data[13]. In addition, modern websites
often use CDNs or host content on di�erent servers and in di�erent documents
than in the requested HTML file. Therefore, web clients often download
additional content after the initial request is made, which is done when the
HTML is interpreted. Crawlers and scrapers, however, do not interpret the
whole HTML, they only seek links or particular data.

Di�erent techniques may be used depending on the type of data the
scraping or crawling application is seeking. For a simple website with script
segments embedded in the HTML, a simple HyperText Transfer Protocol
(HTTP) GET request is necessary as all the source is present in the request
body. More complex websites hide sources inside the JavaScript behind events
triggered by the code, for example, a website might load JavaScript which in
turn loads more JavaScript code via a HTTP request. Here there are several
approaches, one of which is to try and parse the source and find di�erent
code bases by analyzing, for example, string literals, trying to find uniform
resource locator (URL)s. Another approach is to use web browser drivers and
programming interfaces to standard web browsers such as Google Chrome that
interprets web code and outputs the resulting code[14].

One crucial aspect to be aware of is that it may be di�cult for a website
to tell real users apart from scrapers and crawlers, as they behave similarly
from a server perspective. However, since scrapers and crawlers can be used
nefariously, a website owner can take steps to limit the scraper’s activity. Aside
from aggressive methods of denying service to suspicious users, websites
commonly refer to the so-called robots.txt file. The following is an
extract from an anonymized website’s robots.txt. Some paths have been
changed to retain anonymity.



Background | 13

#
# well-known resource robots.txt from 17.392
#
User-agent: *
Disallow: /form/
Disallow: /public/
Disallow: /cm/
Disallow: /info/
Disallow: /work/
Disallow: /xyz/
...
Disallow: /about/vacancies/open/
Disallow: /about/vacancies/open?
Disallow: /en/about/vacancies/open/
Disallow: /en/about/vacancies/open?
Disallow: /blogs/tags
Disallow: /vacancies/internal/

Sitemap: https://[REDACTED]/sitemap.xml

The file specifies which areas of a web page are not allowed to be scraped.
For example, the robots.txt above advises that scrapers and crawlers may
not access the information about vacancies at the organization. However,
beyond acting as a moral compass, the file does nothing to actually prevent
a determined adversary from scraping the disallowed pages.

2.5 Existing solutions for detecting dependen-
cies

Our study found four relevant solutions currently available for detecting
a website’s dependencies from a client perspective. Three of these are
browser plug-ins, Library Detector for Chrome, Retire.js, and OWASP
pen test. As plug-ins, these solutions extend the functionality of a web
browser, using information gained from interfacing with the browser to detect
dependencies on the website currently loaded by the browser. Another result
of being implemented is that these solutions can not be easily automated
as they require a user to operate the web browser and activate the plug-in.
Furthermore, they are dependent on support from the browser to function



14 | Background

correctly. All these solutions use a small custom database containing known
vulnerabilities and, di�ering from databases mentioned above, including
methods of interfacing with the JavaScript code for detecting libraries from
a client perspective[15][16].

Aside from the browser extensions, more extensive and more sophisticated
commercial solutions exist, for example, Snyk[17], which provides other
services and vulnerability scanners. These commercial solutions are also
much broader in their scopes and do not stop at addressing dependency
vulnerability, but they also detect flaws and code vulnerable to attacks in
the user code itself. Moreover, these solutions usually have direct access to
development environments, either via code repository systems such as GitHub
or via a local installation, where a package manager manages open-source
vulnerabilities.

There exist prevalent vulnerability scanning solutions that scan websites
from a client perspective, such as OWASP Zed Attack Proxy[18] and
Skipfish[19]. However, these solutions provide a more extensive set of tools,
including active penetration, such as injecting malicious payload via POST
requests or open ports. This is something that can prove disruptive to the
website and something that our external stakeholders strictly prohibit.

2.5.1 Trust and Demand for Solutions

When using any proprietary software, one can never be certain of exactly what
the software executes. This means that the user needs to trust the software
providers not to be malicious. This is not a problem for most entities, and
reputable third-party software is reasonable to use. However, for companies
and governmental organizations that deal with sensitive information and fear
being targets of cyber-attacks, using a third party for security analysis can be
ruled out. Thus, these tools need to be either open source or developed on-
premises.

We have found no open source, non-disruptive, automated alternative with
a completely o�ine database of known libraries and their vulnerabilities.



Methods | 15

Chapter 3

Methods

3.1 Research process

This project consists of a pre-study phase and an implementation phase.
Knowledge gained in the pre-study is used to develop a process for
implementing the product. First, we gather data on the theory behind and
the methods used within the subject. Following this is a development process
that works iteratively.

3.2 Pre-Study

The goal of the pre-study was to discover current techniques and methods that
are proposed in academic papers or present in current solutions. Academic
papers on the subject were found by searching Google Scholar with various
combinations of the keywords "Vulnerability", "Dependency", "JavaScript",
and "Detection".

Current solutions were found by making Google queries with the keywords
"Library detection", "Vulnerability detector", "plug-in", and "application", as
well as looking at references in articles on the subject. Current solutions
were deemed acceptable if the provided product was free and that the solution
provided a report on a website’s JavaScript library dependencies, and if the
source code was publicly available. Finding corresponding vulnerabilities
where not deemed necessary, as finding reported vulnerabilities to a library
with a known version number is trivial compared to finding the dependency
and its version.



16 | Methods

3.3 Requirement Specifications

We are interested in developing a solution that adheres to the following
requirements, each of which is addressed in the subsequent sections of the
report.

• The product should have an interface that is makes it possible to:

– Initialize a scan of a website
– Show the progress and results of an ongoing scan
– Produce a report or a summary of the findings of the scan
– Schedule a scan of a website

• The product should have a scanner that is able to:

– Load the dependencies of a given website
– Be able to identify dependency names and versions of a

dependency with high accuracy
– E�ciently traverse a website and links on that website
– Be aware of robots.txt files

• Database: The database should be able to:

– Run on a Linux server
– Update the list of stored vulnerabilities
– E�ciently index a dependency along with its versions number

3.4 Evaluation

The product is evaluated against existing products, namely Retire.js[15],
Library Detector for Chrome[16] and OWASP pen-tester plug-in[18]. A
collection of websites was selected on the criteria of fitting the environment
of the external stakeholder, and their dependencies were manually discovered.
Manual discovery entails thoroughly searching the website with a web
browser and looking for license information and library signatures. The set
of dependencies manually discovered is by no means an extensive set of
all dependencies on the webpage, but gives a lower bound of how many
dependencies that the webpage has. Finally, the products are used on the
website, and their results are evaluated on the following points:



Methods | 17

• How many of the known dependencies the product finds.

• Proportion of found dependencies to found dependencies manually

• How many false positives that are reported.

• Proportion of false positives to true positives.

Further, we present which methods of detecting dependencies that are most
e�ective by showing how many dependencies each method finds. We also
present the number of total vulnerabilities found on all the sites.

3.5 Documentation

The methods and strategies used during development and in the final
implementation will be discussed in section 4. Note that the implementation
will not be published due to security concerns from our external stakeholder.



18 | Methods



Design | 19

Chapter 4

Design

The product is consists of several components. This chapter discusses di�erent
methods and parts of our implementation and their overall expected success.
We further explain the challenges that appeared and how our implementations
addresses them.

4.1 Web scarping & crawling

To determine the libraries used in front-end web code, we must first be able to
gather all the source code used by a web browser when accessing a website.
To traverse the whole website, we developed a scraper that looks exclusively at
HTML a-elements and extracts their href-attribute. If this href-property
is a URL that does not direct to an external website, this URL is added to a
queue.

4.2 The Crawler

The crawler itself takes the form of a link crawler. It is given a base URL as an
argument that is added to the workload queue. It then traverses the web pages
according to Figure 4.1



20 | Design

Figure 4.1: Protocol of link crawler

The URL Workload is a queue of URLs, initialized with the base URL
given by the user. The first URL in the queue is given to the crawler that
fetches the source code of the resource. If the resource is JavaScript file it will
be added to the JavaScript database, and if the resource is a HTML page it will
be scanned for links to HTML or JavaScript files, which will be added to the
URL Workload queue [20][21].

On a modern website, URLs are represented in mainly two formats:
absolute and relative. Absolute URLs contain the whole network location,
for example

www.example.com/path?query=value#fragment

Relative URLs, however, only contain the path. For example,

/path?query=value#fragment

found on a website on www.example.com is interpreted by the browser as

www.example.com/path?query=value\#fragment

This needs to be accounted for when processing the URLs since the URLs
may contain information that is relevant to the dependency that the resource
contains.

4.3 Library detection

Given a specific JavaScript file, there are several ways to discover what
libraries a website uses from the client’s perspective. Since web browsers
interpret the code from a website, there is no need for comments or any other
metadata that declares the library name and version number. There is no
guaranteed way of determining if the code is from a known library. Websites



Design | 21

often store the source code of JavaScript on di�erent sites or in di�erent
directories on either a CDN or local, the path of which sometimes includes
information about the libraries used and version number. In addition, libraries
often include direct references to the library’s name and version number. This
is sometimes done by having a simple comment at the start of a file or a code
segment with information including library name and even version numbers.
This is made even more di�cult since methods such as minification attempt
to reduce the file size as much as possible without changing the execution
behaviour, for example, removing white spaces or making variable names
shorter. This also functions as a way of obfuscating the workings of the
code, making it harder for a user to understand the code and thus making it
harder to exploit any vulnerability. In this section, we describe a few possible
approaches that our product implements and in Chapter 5, we show how
successful these methods were.

4.3.1 File name

The first approach is the name of the file itself. For example, consider the file
js-sha3/0.8.0/sha3.min.js[22], a popular JavaScript library used
for the sha3 function. The path to the file itself clearly states not only that
the name of the library is js-sha3 but also that the version is 0.8.0. Using
a text parser on the path, the information of the library name as well as the
version, can be extracted. The details of the parser will be discussed in a
di�erent chapter. This method alone is not enough since we found that it is
not uncommon for the file paths to be obscured or unrelated to the library’s
name. However, in some instances, it proved very useful, and with the support
of other methods, it was robust in the sense that it rarely gave false positives,
and if a library combined with a version was found, it gave an accurate result.

4.3.2 Comments in Code

A second approach is annotations made in the comment blocks in the code
itself. In the same file mentioned earlier, there is a comment at the top of the
file that states the following[23].

/**
* [js-sha3]{@link https://github.com/emn178/js-sha3}
*
* @version 0.8.0
* @author Chen, Yi-Cyuan [emn178@gmail.com]



22 | Design

* @copyright Chen, Yi-Cyuan 2015-2018
* @license MIT
*/

Many other libraries begin with similar comments that provide the name of
the author, the name of the library, and the version of the JavaScript package.
However, like the convention of including the name and version in the file
path, it is merely a convention and not all libraries and websites do this.
The comments are also not standardized in a way that a comment parser can
easily interpret them. An additional challenge is extracting the comments
from the rest of the code in the JavaScript file, which proves hard if the file
has gone through minification or obfuscation methods, provided there are any
comments in the file at all. This approach may also be more prone to false
positives compared to parsing the file name. It was common for libraries
to allude to other libraries in their comments without using them, or some
keywords such as copyright or return were incorrectly labelled as libraries.
Library names that included other library names, such as jquery and jquery-ui,
were also sometimes mismatched. These errors were mitigated through checks
used in our text parser. Overall, however, this approach was very useful in
identifying dependencies along with their versions, particularly when a single
file contained multiple dependencies, each independently labelled.

4.3.3 Keywords in Code

A third approach is the code of the dependency itself; instead of having
comments in the code, some libraries contain variables and functions that can
be used to extract the name and version of the library. One example from the
popular time parsing system moment contains the line moment.version =
’2.29.4’;. Using this line, a JavaScript interpreter can query the variable
moment.version in the moment module and then have the string 2.29.4
returned to them[24]. This method is helpful if the name of the packet
is already known; however, if the name of the dependency is not already
known, this information is neither practical nor accessible. Additionally, it
requires some form of parsing and interpretation of the JavaScript file, which
can both be challenging to implement and a potential security risk for the
implementation.

Using a similar approach to parsing the code, the version and name of
a library can be extracted with the help of signatures of the function and
variables found in the code itself. Several libraries provide information about
themselves via functions or values that are distinguishable by name. For



Design | 23

example, the when using the popular library jQuery the client can call the
function jQuery.fn.jquery to retrieve the version number. All the plug-
ins we tested use this method to detect libraries[16][15]. This approach was
experimented with but not deemed reliable enough to pursue. The main
drawback of this method is that each library needs to be checked independently
for each file found, which is not feasible, neither from an e�ciency point of
view nor from the time it would take to implement the functionality for each
library. However, current solutions can use this way because they are already
written in JavaScript, but also because they mainly focus on the most popular
dependencies and are continuously maintained.

4.3.4 Comparing File Hashes

Hash functions take a string as an input and produce a unique value by applying
certain operations on the data of the string itself. They allow for an easy way
of quickly comparing strings, or data in general, as comparison need not be
performed for the whole data. As the libraries shared and used on the internet
are, in most cases, from the same source, the file content is identical and can
therefore be compared by simply comparing the hash of the file. Using this
approach, a database could be created with the hashes of the most commonly
used dependencies. Then, to verify a dependency found by the scraper, it
would hash the dependency file and then use the hash as an index in the
database to quickly look up the dependency. The drawback, however, is that
minor alterations to the file may result in the signature hash being di�erent,
thus not yielding a match in the database. This is the key issue as to why
this method was not explored further since there are many ways that files are
modified before they are presented on the end-user’s device. In addition, the
hash of the source files for multiple di�erent versions needs to be obtained
somehow to construct the index table that is used to compare the hashes
against.

4.3.5 License

Almost all dependencies come with a license attached. The license dictates
under which circumstances the code can and should be used, for example, the
extent to which the code can be used in a commercial setting, how it may
be modified or distributed, and whether the dependency owner can be held
liable. One standard license is the MIT license, commonly used by widespread
dependencies due to liberal permissions. However, the MIT license does



24 | Design

require that the entity that imports a dependency must include a copy of the
license along with the dependency[25]. This results that the list of licenses
used by a website can give clues as to the libraries that the web page uses.
One such example is the following:

/*!
* jQuery UI Draggable 1.11.4
* http://jqueryui.com
*
* Copyright jQuery Foundation and other contributors
* Released under the MIT license.
* http://jquery.org/license
*
* http://api.jqueryui.com/draggable/
*/

Looking at this, it is trivial for a human to see which dependencies are used
along with their version number. However, a computer program still requires
some form of text parsing, which will be explained in a di�erent section. This
file can sometimes be accessed by adding the string LICENSE.txt and the
end of the path to the JavaScript file. It is unlikely to produce an inaccurate
result since all the information is clearly laid out.

4.3.6 Map files

Some JavaScript bundling services provide the original, non-minified source
code on a web location available to the client, usually indicated by a comment
in the minified JavaScript source code file containing the absolute or relative
URL of a sourcemap file. The sourcemap file is formatted in JavaScript object
notation (JSON). It contains the original source code and information about
how to expand the bundled source code to several files.

//# sourceMappingURL=example.js.map

The original source that these files contain sometimes includes license
comments that are not present in the minified code or the LICENSE.txt file
if such a file exists.

4.3.7 Version Extracting

For the di�erent approaches, there needs to be a system that can extract the
version name from the di�erent forms of strings obtained from either the file



Design | 25

name, comments in the file, license files, or map files. This was done by
implementing a word-trie data structure. Using the GAD, a trie data structure
is constructed where each root node represents the first word of each library
in the database. A list of popular NPM libraries was also added to the trie
to account for dependencies that do not have a reported vulnerability. The
children of each node represent the composition of the root word and the
following word in the library name. In addition, each node has a boolean value
indicating if the particular composition this node’s relative position in the tree
represents is a full name in the database. This structure allows for matching
library names, which are composites of other library names. Here an algorithm
is constructed which consumes input text and matches the longest possible
composite name in the trie. For example, jQuery and jQuery UI both exist in
the database, but we do not want to match jQuery if UI is present. Using this
trie, we can get the longest possible match of a composite library name without
the need to store each composite name as a separate entry. For example, Figure
4.2 shows how the trie will be constructed; several React packages are inserted,
the names in bold font indicate that the composite word is a valid library, while
roman font indicates composite words that are not valid libraries.

react

native

reanimated fast

image

baidu

voice

synthesizer

webview

bootstrap

table

Figure 4.2: trie constructed from composite names of react packages, the full
path to a bold font entry represents an existing package name

The trie not only allows for easy construction of context-sensitive matching
algorithms, but the search is also a relatively fast procedure, where the
asymptotic lower bound, of the time complexity, is O(n).

The existence of a known library name in a comment does not give any



26 | Design

particularly meaningful information as to what libraries are used by itself. To
extract the name and version of the library, certain steps are taken to parse this
information. The first one is to tokenize the words into arrays of tokens. Given
the example comment below.

/*! jQuery UI - v1.13.2 - 2022-07-14
* Copyright jQuery Foundation and other contributors;
* Licensed MIT */

The tokenization would first remove all non-alphanumeric characters except
the exclamation point (!) and the period (.) as they are used in other steps.
This results in the following array of tokens.

[�!�,�jQuery�,�UI�,�v1.13.2�,�2022�,�07�,�14�,...]

In order to determine if the comment contains information about the library,
it is scanned for the following keywords license, copyright, c, !,
mit, bsd, apache, gpl after adjusting everything to lowercase. If at
least one of these is present, the comment is considered relevant. Thereafter,
the following regular expression is used to scan for version numbers.

v?(\d{1,3}\.\d+(?:\.\d+)+).*

The regular expression works as follows:

• v? matches the optional character v.

• \d{1,3} matches one to three digits.

• \. matches a single dot (punctuation mark).

• \d+ matches one or more digits.

• (?:\.\d+)+ matches one or more groups of a dot followed by one or
more digits.

• .* matches zero or more of any character.

The regular expression will match expressions similar to vX.Y.Z, where
X is a number with one to three digits and both Y and Z are numbers with
one or more digits. In the example, it will match token v1.13.2, which has
position 2 in the token array (counting from 0).The regular expression will
match expressions similar to vX.Y.Z, where X is a number with one to three
digits and both Y and Z are numbers with one or more digits. In this case, it



Design | 27

will match token v1.13.2, which has position 2 in the token array (counting
from 0). A simple algorithm then calculates the distance between discovered
names in the comment block and the version number token and subsequently
chooses to match the closest known name to a particular version number.

[�!�,�jQuery�,�UI�,�v1.13.2�,�2022�,�07�,�14�,...]
[ 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...]

The largest continuous match of tokens was then found by querying the trie
with the tokens in the comment block. In this case, the largest match is
jQuery UI. If there are multiple matches of the same length, the one which
is closest to the beginning of the paragraph is selected. If there are multiple
version numbers in the same comment, the process is repeated for each version
number that is found. In the end, the result is a list of library names and version
numbers that are present in the comment block. In this case, the result would be
"jQuery UI" with version number 1.13.2 after removing the "v". We
raise natural language processing (NLP) as a di�erent interesting approach as
a topic of further research.

4.4 Database

Since JavaScript dependencies are so widely used for web applications, there
is a significant interest in keeping track of which dependencies that contain
a vulnerability. Therefore, databases exist solely to collect information and
data about potential vulnerabilities and security flaws of most commonly
used JavaScript packages and dependencies. This is done to help developers
locate and address these and allow them to improve their code. These
databases include the National Vulnerability Database (NVD), run by the
US government [12], the common vulnerabilities and exposures (CVE)
database[10], and the Open Web Application Security Project (OWASP)
Dependency Check [26]. There are also commercial applications with the
same issue in mind, such as Snyk, Retire.js, and OWASP ZAP. Along with their
databases, they provide tools and plug-ins that also help scan for source code
vulnerabilities and check for outdated dependencies [17]. These databases and
tools are essential to reduce security risks but should also not be relied upon as
they only consider exploits that have been found and published. Furthermore,
developers should take other steps to stay ahead of security threats.

In previous studies, it has been pointed out that despite this plethora of
alternatives, there is no readily centralized database for JavaScript dependency



28 | Design

vulnerabilities[7]. However, since early 2022, the code hosting website
GitHub has opened up the GitHub Advisory Database (GAD) to public
contribution. This database is an open-source database of vulnerabilities from
commonly used development ecosystems. It is maintained by GitHub, with
the advantage that all entries are stored in a regular git repository[27]. This
repository can thus easily be cloned with the git clone command and
updated in the future when new vulnerabilities are added with git pull,
making the implementation future-proof and easy to maintain. Each entry
contains the name of the package, the ecosystem from which it originates,
which versions the vulnerability a�ects, the severity ranked from low to
critical, and a short summary and description of the vulnerability[28]. By
cloning the repository and allowing a script to extract the needed information,
this data is stored in a structured database to be later indexed when the crawler
finds packages that are in use. When using a database such as the GAD, the
correct license needs to be adhered to. A downside to using a third-party
database is the risk that the database will eventually not be funded and no
longer be updated. In this case, however, we have reason to believe that the
backing from GitHub will continue to fund the development into the relevant
future.

This database has an emphasis on being well-structured, and each report
follows a strict format that facilitates quick lookups by a computer. The GAD
consists of JSON files, one for each reported vulnerability. A Structured Query
Language (SQL) database is constructed using the information in the GAD
files, and a table is created containing information on each vulnerability.

CREATE TABLE vulnerabilities (id, name, summary, ...);

By iterating through thesis files and singling out vulnerabilities in the "NPM"
ecosystem, we insert each file’s data into the table.

INSERT INTO vulnerabilities (id, name, summary, ...)
VALUES (GHSA-xxxxx,yyyy,...);



Results and Analysis | 29

Chapter 5

Results and Analysis

This chapter discusses the results of our implementation and compares it to
an existing baseline. The performance of the di�erent methods used are also
compared with each other. The results also create some commentary on the
amount of currently unsolved vulnerabilities on the web. Lastly the reliability
of our data is evaluated.

5.1 Comparison of Found Dependencies

After testing the di�erent implementation on the 14 websites we plotted the
percentage of dependencies found by each solution in relation to the number
of manually found dependencies. We also plotted the average percentage of
dependencies found. This can is illustrated in Figure 5.1. A table with the data
that produced this Figure is avaiable in the appendix.



30 | Results and Analysis

Figure 5.1: Percentage of dependencies found by each solution for each
scanned website

As visible in Figure 5.1, our implementation managed to find more
dependencies than all the tools it was compared against as it on average found
49% of dependencies on a webpage compared to the 27%, 23% and 19%,
found by OWASP, Libdetector and Retire respectively. Additionally, we found
that our product reported one false positive on web page number 6; a library
that on closer inspection did not exist. None of the other solutions reported
any false positives.

5.2 Performance of different methods

The final implementation used a combination of the information found in the
URL, License file, JavaScript comments and potential source map files if
references to them existed. The performance of these methods was evaluated
by counting the number of dependencies found with each method from the
aforementioned test case. If the same dependency was found by more than
one method, it was counted towards both methods. The performance of the
di�erent methods used for dependency detection is displayed in Table 5.1.
Here is each dependency, either a true positive or false positive found by a
particular method across all the sites, recorded. Unique dependencies, which
were not discovered by any of the other products tested, are also shown.



Results and Analysis | 31

Table 5.1: Di�erent type of finding depending on method used

Type of Finding URL License File JavaScript Comment Source Map
True Positive 15 20 44 0
False Positive 0 0 1 0

Unique 1 16 26 0

Table 5.1 shows the comments in JavaScript code were the method that
found the most libraries, followed by the license file and the URL. The source
map file provided no findings, most likely because none of the websites used
it to package their web pages. License files also produced proportionally more
unique values, with nearly all the license findings being unique compared to
just over half of the JavaScript comments. License files may produce more
unique values due to not directly linked in the HTML file but rather are
fetched based on the JavaScript file, an approach that may not be considered
by the other tools we compared against. We also suspect that some websites
are overly cautious when importing licensing from bigger projects and thus
include licensing for programs that they do not use. In these cases, we still
consider the finding a true positive since it is unfeasible to determine the extent
a licensed dependency is actually used in the code. The library that was false
reported to be present was the library inflect, whose name in the NPM
repository is "i"[29].

5.3 Found vulnerabilities

Most of the libraries found did not contain vulnerabilities and thus originated
from the list of popular NPM libraries. From inspection, it was also very
common that the same library was used in many of the websites scanned.
For all the libraries that contained a vulnerability, the vulnerability would be
fixed if the library was updated to the latest stable release. The GAD rates the
severity of a vulnerability from low to critical, table 5.2 shows the breakdown
of all websites and libraries with their highest severity.

Vulnerability found in None Low Moderate High Critical
Dependency 51 0 5 2 0
Website 8 0 4 2 0

Table 5.2: Highest severity of found vulnerabilities, for each dependency and
website



32 | Results and Analysis

A total of seven vulnerabilities were found, and from these vulnerabilities,
we found that six out of 14 sites had at least one known vulnerability on their
homepage. Most of these were the same dependency used in multiple websites.
This portion of websites (43%) with at least one dependency with a known
vulnerability is slightly higher than the 37% found by[7].

5.4 Reliability of Data

The data collected by our implementation and by the implementations we
compared against were both objective in the sense that the results were
deterministic each time a website was scanned. However, the manual search
is less objective because human error makes the approach prone to mistakes
and may miss certain dependencies or mistakenly report on ones not used.
We conducted the manual search without knowledge of the results of our own
implementation in order to prevent bias in the dependencies we picked. After
the first manual round of collection, we also ensured that each dependency
reported by any implementation was verified. We did have to make a
distinction of which libraries we would count as a web dependency versus a
di�erent form of iteration, such as a bundler or API interface. We also ensured
that each scan was carried out on the same website and that no update of the
websites had occurred between scans.

The websites were chosen on the criteria of being deemed similar in some
aspects to the intended target websites of external stakeholders. These criteria
were that the websites were to be similar in functionality and that the websites
belong to Swedish organization. This may have had an e�ect on the results, as
the test sites used during development of our product were chosen on the same
criteria, this could create an inductive e�ect on the product’s development,
skewing the results in the favour of our product.

5.5 Discussion

We observe that our approach found more dependencies than any of the
existing solutions tested. Our product, however, had one false positive while
the other solutions had none. This discrepancy depends on the matching
techniques and the di�erent databases for recognizing known libraries. Our
product uses a bottom-up approach of semantically matching known library
names to a version number in a general license-style comment format.
The existing solutions tested instead use library-specific matching, i.e. a



Results and Analysis | 33

specific regular expression tailored to match a specific library’s license
comment[15][16][30]. The databases also di�er in that our product uses
an aggregate of libraries in the NPM ecosystem with known vulnerabilities
and the top 1,000 NPM libraries. The other solutions use a smaller, tailored
database containing the library and the specific matching algorithm or regular
expression for that library. This allows us to match a much larger variety of
libraries with slightly lower accuracy than the alternative solutions.

Many of the libraries that were missed by our implementation were simply
missed because they were free from vulnerabilities and thus not part of the
dependency trie discussed earlier. Manually adding the missed dependencies
to the trie often resulted in the dependency being found, meaning that it likely
would have been found if it had a vulnerability that had been reported to the
GAD.

Reporting false positive dependencies portrays an incorrect composition
of a web-application. When vulnerabilities stemming from a false positive
dependency are reported, the user receives false warnings, possibly leading to
alert fatigue or overall distrust of the results. We recognize this problem as
a severe negative impact on the quality of our product, however, we see it as
unavoidable to a certain degree when using heuristical methods such as the
ones described in Chapter 4.

The results showed that the method of checking license comments in the
raw JavaScript files– not including source-mapped files– was by far the most
superior in terms of the number of found dependencies. Checking license files,
however, was the method which, proportionally, yielded more dependencies
that were exclusively found by only our implementation. The reason for this
is that the other solutions tested do not search for license files, and developers
that use license files are– depending on license type– usually not required to
include the license information in the license file in any other part of the web
page.

Our solution uses a local database relying completely on the accessibility
and maintenance of Github’s advisory database, GAD, to keep the database up
to date and working. The other discovered solutions relies on local databases
of library-specific regular expressions or similar as a means to store known
libraries. Where our approach su�ers from complete dependency on GAD,
the other solutions depends completely on contingencies within the library
itself, for example, the format of a library’s license comment or the name of
a variable containing the library’s version. We found no issues implementing
the database with a proven and e�cient SQL database. The database itself is
3.7 megabytes in size and is well optimised for fast accesses [31].



34 | Results and Analysis



Conclusions and Future Work | 35

Chapter 6

Conclusions and Future Work

In this Chapter we conclude the study and discuss possible improvements to
the product while also suggesting further areas of exploration.

6.1 Conclusions

Although our pre-study found little research on the subject of front-end
library detection, we found several existing solutions with open source code.
Looking at a few key papers and existing solutions, we found several methods
being used for detecting dependencies in JavaScript web applications. These
methods are:

• matching known names with filenames

• parsing license comments in the source code

• searching for and parsing license files

• comparing hash values of source code with known libraries

• searching for keywords within the source code itself

• searching for and applying the methods above on map files

Our product did not implement all techniques we discovered in our pre-study,
for example, comparing file hashes or interpreting the JavaScript and using
console commands to deduce the existence of libraries. We also opted for
a di�erent approach with our database, using Github’s Advisory Database
together with a list of the top 1,000 NPM libraries to create a local SQL
database.



36 | Conclusions and Future Work

Even though we did not use all of the methods discovered in the pre-study,
we still managed to outperform all the other products we tested. In the end,
our results show that the most e�cient combination of the tested methods was
to check the license information of the websites by looking at comments and
searching for license files. The products we tested and the only truly relevant
solution described in an academic paper [7] all use a predefined set of known
libraries with matching procedures specific to those libraries. Our method,
on the other hand, applies a large set of known names to a general matching
procedure, allowing us to match more libraries. However, this approach is
more prone to producing false positives.

Our implementation was successful because it satisfies the requirements
of our external stakeholder. The original problem was also successfully
addressed. Through this project, we have learned numerous things, a major
one being the need for quality and a wide variety of testing data. In order
to let the product successfully generalize, it needs to be developed with a
wide variety of websites in mind to adapt to unseen scenarios. This thesis
work provided us with a great deal of insight into web development, which
frameworks, tools and libraries are used, how developers work with these and
how prevalent the issue of dependency hell – the numerous libraries used in
web development and the lack of insight into these libraries dependencies– is
in web development.

If we were to continue or rework our product with the knowledge gained
from this thesis work, we would use a browser driver framework such as
Selenium instead of creating our own crawler. This would not only save
time but provide more functionalities, such as the possibility of executing
JavaScript code on a browser when crawling and searching for dependencies.
We recommend that anyone planning to construct a similar product use the
data or techniques from existing products.

6.2 Future works

We found as the research and development of the product proceeded that
there were many aspects of the subject which were, because of the time limit,
necessarily neglected. Although there are plenty of products providing website
pen-testing capabilities, we found very few products focused on detecting
libraries and their vulnerabilities solely from a client perspective. Moreover,
all the solutions found used the same, relatively simple methods for detecting
dependencies.

We see significant potential in applying more sophisticated methods to



Conclusions and Future Work | 37

front-end library detection, such as using named entity recognition or other
NLP methods. This would potentially allow for the identification of libraries
that were not seen before. The hashing method explained in Section 4.3.4
could also be beneficial. Although it is doubtful that this method identifies
new libraries, it may be beneficial to use it in combination with more uncertain
methods, such as parsing comments in JavaScript source code.

We believe that an exhaustive library database could be used to identify
more niche and less common libraries. Construction of such a database
might be di�cult and impractical, but it would be beneficial not only for the
purpose of dependency detection but might be a valuable resource for other
applications and for web developers.

We also see further demand for scanning of sides that are less accessible,
such as web pages hidden behind logins that require PUT requests or more
sophisticated forms of authentication. This might be easily done using a web
driver framework such as Selenium.

Additionally, specifically tailored scanners for popular frameworks such
as React [32] or Angular [33] can be explored as the usage of frameworks
increases in popularity. This approach can also be extrapolated onto websites
not using JavaScript but also alternative web execution such as WebAssembly
(WASM).

Further research into the subject might benefit from the use of static
analysis of JavaScript code, such as dead code detection, to see if the website
actually uses the included or referenced libraries on its site.

Finally, since many modern apps for phones and tablets are emulated
websites, a scanner targeted explicitly for them could also be an area that needs
further exploration.

The results of this thesis shine a spotlight on the need for an adaptation of
more systematic methods to manage and proactively discover vulnerabilities
in JavaScript dependencies; until then, vulnerable dependencies will quietly
remain on the front-end of numerous websites.



38 | Conclusions and Future Work



References | 39

References

[1] S. Nyheter and J. Toresson, “It-attacken mot coop – detta har hänt,” SVT
Nyheter, 07 2021. [Online]. Available: https://www.svt.se/nyheter/inrik
es/it-attacken-mot-coop-detta-har-hant [Page 3.]

[2] IBM, “Cost of a data breach report 2022 2,” 2022. [Online]. Available:
https://www.ibm.com/downloads/cas/3R8N1DZJ [Page 3.]

[3] S. Raemaekers, A. Van Deursen, and J. Visser, “An analysis of
dependence on third-party libraries in open source and proprietary
systems,” Sixth International Workshop on software quality and
maintainability, vol. 12, pp. 64–67, 2012. [Page 3.]

[4] M. Musch, M. Ste�ens, S. Roth, B. Stock, and M. Johns, “Scriptprotect,”
Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, 07 2019. doi: 10.1145/3321705.3329841
[Page 3.]

[5] S. Jain, D. S. Tomar, and D. R. Sahu, “Detection of javascript
vulnerability at client agen,” INTERNATIONAL JOURNAL OF
SCIENTIFIC AND TECHNOLOGY RESEARCH, vol. 1, 08 2012.
[Online]. Available: https://www.researchgate.net/publication/2361557
47_Detection_of_JavaScript_Vulnerability_At_Client_Agen [Page 4.]

[6] D. R. Thomas, A. R. Beresford, T. Coudray, T. Sutcli�e, and A. Taylor,
“The lifetime of android api vulnerabilities: Case study on the javascript-
to-java interface,” Security Protocols XXIII, pp. 126–138, 2015. doi:
10.1007/978-3-319-26096-913[Page 4.]

[7] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” Proceedings 2017 Network and Distributed
System Security Symposium, 2017. doi: 10.14722/ndss.2017.23414. [Online].
Available: https://arxiv.org/abs/1811.00918 [Pages 4, 28, 32, and 36.]

https://www.svt.se/nyheter/inrikes/it-attacken-mot-coop-detta-har-hant
https://www.svt.se/nyheter/inrikes/it-attacken-mot-coop-detta-har-hant
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://www.researchgate.net/publication/236155747_Detection_of_JavaScript_Vulnerability_At_Client_Agen
https://www.researchgate.net/publication/236155747_Detection_of_JavaScript_Vulnerability_At_Client_Agen
https://arxiv.org/abs/1811.00918


40 | References

[8] L. Hilty and B. Aebischer, ICT for Sustainability: An Emerging Research
Field, 01 2015, vol. 310, pp. 3–36. ISBN 978-3-319-09227-0 [Page 6.]

[9] T. Berners-Lee and D. Connolly, “Hypertext markup language - 2.0,”
www.rfc-editor.org, 11 1995. doi: 10.17487/RFC1866. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1866 [Page 9.]

[10] M. Corporation, “cve-website,” www.cve.org. [Online]. Available: https:
//www.cve.org/About/Overview [Pages 11 and 27.]

[11] C. Details, “Cve security vulnerability database. security vulnerabilities,
exploits, references and more,” Cvedetails.com, 2009. [Online]. Available:
https://www.cvedetails.com/ [Page 11.]

[12] NIST, “Nvd - nvd dashboard,” nvd.nist.gov. [Online]. Available: https:
//nvd.nist.gov/general/nvd-dashboard [Pages 11 and 27.]

[13] M. Khder, “Web scraping or web crawling: State of art, techniques, approaches
and application,” International Journal of Advances in Soft Computing and its
Applications, vol. 13, pp. 145–168, 11 2021. doi: 10.15849/ijasca.211128.11
[Page 12.]

[14] M. Gheorghe, F.-C. Mihai, and M. Dârdal�, “Modern techniques of web
scraping for data scientists,” Revista Romana de Interactiune Om-Calculator,
vol. 11, pp. 63–75, 2018. [Online]. Available: http://rochi.utcluj.ro/rrioc/arti
cole/RRIOC-11-1-Gheorghe.pdf [Page 12.]

[15] RetireJS, “Retire.js,” GitHub, 03 2023. [Online]. Available: https:
//github.com/RetireJS/retire.js [Pages 14, 16, 23, and 33.]

[16] J. Michel, “Release v6.0.0 · johnmichel/library-detector-for-chrome,” GitHub,
07 2020. [Online]. Available: https://github.com/johnmichel/Library-Detec
tor-for-Chrome/releases/tag/v6.0.0 [Pages 14, 16, 23, and 33.]

[17] Snyk, “Open source security management | snyk,” snyk.io, 2023. [Online].
Available: https://snyk.io/product/open-source-security-management/
[Pages 14 and 27.]

[18] O. ZAP, “Owasp zap,” GitHub. [Online]. Available: https://github.com/zap
roxy [Pages 14 and 16.]

[19] S. Pinkham, “spinkham/skipfish,” GitHub, 05 2022. [Online]. Available:
https://github.com/spinkham/skipfish [Page 14.]

https://www.rfc-editor.org/rfc/rfc1866
https://www.cve.org/About/Overview
https://www.cve.org/About/Overview
https://www.cvedetails.com/
https://nvd.nist.gov/general/nvd-dashboard
https://nvd.nist.gov/general/nvd-dashboard
http://rochi.utcluj.ro/rrioc/articole/RRIOC-11-1-Gheorghe.pdf
http://rochi.utcluj.ro/rrioc/articole/RRIOC-11-1-Gheorghe.pdf
https://github.com/RetireJS/retire.js
https://github.com/RetireJS/retire.js
https://github.com/johnmichel/Library-Detector-for-Chrome/releases/tag/v6.0.0
https://github.com/johnmichel/Library-Detector-for-Chrome/releases/tag/v6.0.0
https://snyk.io/product/open-source-security-management/
https://github.com/zaproxy
https://github.com/zaproxy
https://github.com/spinkham/skipfish


References | 41

[20] V. Cothey, “Web-crawling reliability,” Journal of the American Society for
Information Science and Technology, vol. 55, pp. 1228–1238, 2004. doi:
10.1002/asi.20078. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/asi.20078 [Page 20.]

[21] G. Agre and S. Dongre, “A keyword focused web crawler
using domain engineering and ontology,” International Journal of
Advanced Research in Computer and Communication Engineering,
vol. 4, 2015. doi: 10.17148/IJARCCE.2015.43111. [Online]. Available:
https://www.ijarcce.com/upload/2015/march-15/IJARCCE%20111.pdf
[Page 20.]

[22] CDNJS, “js-sha3,” cdnjs. [Online]. Available: https://cdnjs.com/libraries/js
-sha3 [Page 21.]

[23] C. Yi-Cyuan, “js-sha3,” Cloudflare.com, 2015. [Online]. Available: https:
//cdnjs.cloudflare.com/ajax/libs/js-sha3/0.8.0/sha3.min.js [Page 21.]

[24] Moment.js, “Moment.js,” GitHub, 06 2022. [Online]. Available: https:
//github.com/moment/moment/blob/develop/src/moment.js [Page 22.]

[25] L. E. Rosen, Open Source Licensing, 1st ed. Prentice Hall, 2005, vol. 1.
[Online]. Available: https://www.immagic.com/eLibrary/ARCHIVES/EB
OOKS/R050225R.pdf [Page 24.]

[26] OWASP-Foundation, “Vulnerabilities,” owasp.org. [Online]. Available: https:
//owasp.org/www-community/vulnerabilities/ [Page 27.]

[27] Github, “About the github advisory database,” GitHub Docs. [Online].
Available: https://docs.github.com/en/code-security/security-advisories/gl
obal-security-advisories/about-the-github-advisory-database [Page 28.]

[28] GitHub, “github/advisory-database,” GitHub, 03 2023. [Online]. Available:
https://github.com/github/advisory-database [Page 28.]

[29] P. K. Sunkara, “i,” npm, 2021. [Online]. Available: https://www.npmjs.com/
package/i [Page 31.]

[30] DenisPodgurskii, “pentestkit,” GitHub, 04 2023. [Online]. Available:
https://github.com/DenisPodgurskii/pentestkit/tree/master [Page 33.]

[31] SQLite, “35Available: https://www.sqlite.org/fasterthanfs.html [Page 33.]

https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20078
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20078
https://www.ijarcce.com/upload/2015/march-15/IJARCCE%20111.pdf
https://cdnjs.com/libraries/js-sha3
https://cdnjs.com/libraries/js-sha3
https://cdnjs.cloudflare.com/ajax/libs/js-sha3/0.8.0/sha3.min.js
https://cdnjs.cloudflare.com/ajax/libs/js-sha3/0.8.0/sha3.min.js
https://github.com/moment/moment/blob/develop/src/moment.js
https://github.com/moment/moment/blob/develop/src/moment.js
https://www.immagic.com/eLibrary/ARCHIVES/EBOOKS/R050225R.pdf
https://www.immagic.com/eLibrary/ARCHIVES/EBOOKS/R050225R.pdf
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://docs.github.com/en/code-security/security-advisories/global-security-advisories/about-the-github-advisory-database
https://docs.github.com/en/code-security/security-advisories/global-security-advisories/about-the-github-advisory-database
https://github.com/github/advisory-database
https://www.npmjs.com/package/i
https://www.npmjs.com/package/i
https://github.com/DenisPodgurskii/pentestkit/tree/master
https://www.sqlite.org/fasterthanfs.html


42 | References

[32] M. O. Source, “React,” react.dev, 2023. [Online]. Available: https://react.dev/
[Page 37.]

[33] Angular, “Angular,” Angular.io, 2019. [Online]. Available: https://angular.io/
[Page 37.]

https://react.dev/
https://angular.io/


Appendix A: Implementation Comparisons | 43

Appendix A

Implementation Comparisons

Figure 5.1 was produced from the data visible in Table A.1. After testing
the websites, we evaluated them against our implementation on the criteria
of the number of dependencies found and the fraction of found dependencies
compared to the manually found dependencies. In addition, for each tested
webpage, the solution(s) with the highest number of found dependencies is
shown in bold font. The final row displays the total sum of found dependencies
along with the proportion of total true positives found into the number of
manually found dependencies as a percentage.

Table A.1: Found dependencies on each website, per product

Webpage Our Implementation Libdetector Retire OWASP Manual
1 3 3 1 3 5
2 7 3 3 4 12
3 9 3 2 4 19
4 5 1 1 1 6
5 3 2 2 2 6
6 0 4 0 4 5
7 5 1 2 1 9
8 5 4 4 5 9
9 2 1 1 1 2
10 10 3 4 3 16
11 8 3 2 4 31
12 2 2 2 2 3
13 2 2 2 2 5
14 9 1 1 2 14

Sum 70 33 27 38 142
Percentage 49.3% 23.24% 19.01% 26.76% 100%



44 | Appendix A: Implementation Comparisons





TRITA-EECS-EX- 2023:0000

www.kth.se





CCCC,

CCCC,

CCCC,



acronyms.tex


	Introduction
	Problem
	Original problem and definition
	Research question

	Purpose
	Ethics & sustainability
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	JavaScript & Hypertext markup language
	Dependencies
	JavaScript Libraries
	Loading dependencies

	Vulnerabilities
	Vulnerability databases

	Scraping & Crawling
	Existing solutions for detecting dependencies
	Trust and Demand for Solutions


	Methods
	Research process
	Pre-Study
	Requirement Specifications
	Evaluation
	Documentation

	Design
	Web scarping & crawling
	The Crawler
	Library detection
	File name
	Comments in Code
	Keywords in Code
	Comparing File Hashes
	License
	Map files
	Version Extracting

	Database

	Results and Analysis
	Comparison of Found Dependencies
	Performance of different methods
	Found vulnerabilities
	Reliability of Data
	Discussion

	Conclusions and Future Work
	Conclusions
	Future works

	References
	Implementation Comparisons

