
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Optimising Battery Cell Dynamics in
Electric Vehicles with Embedded

Machine Learning
Implementing Real-Time Voltage Modelling in Electric Vehicle

Subsystems

ISAK NYBERG

Optimising Battery Cell Dynamics
in Electric Vehicles with Embedded
Machine Learning

Implementing Real-Time Voltage Modelling in
Electric Vehicle Subsystems

ISAK NYBERG

Degree Programme in Information and Communication Technology
Date: July 29, 2024

Supervisors: Jose Berengueres, Björn Bökelund, Johan Lundström
Examiner: Mats Nordahl

School of Electrical Engineering and Computer Science
Host company: Scania CV AB
Swedish title: Optimering av battericelldynamik i elfordon med inbyggd
maskininlärning
Swedish subtitle: Implementering av realtidsmodellering av batterispänning i
eldrivna fordon

© 2024 Isak Nyberg

Abstract | i

Abstract
This thesis explores the application of machine learning for modelling battery
cell dynamics in battery electric vehicles. The primary objective is to
develop and implement machine learning based models, which accurately
estimate the terminal voltage of lithium-ion battery cells and are able to
run inference in real-time on embedded systems present in battery electric
vehicles. Conventional methods, such as the equivalent circuit model, have
limitations in handling the complex and dynamic environments encountered
in battery electric vehicles. This thesis aims to improve upon these methods
by leveraging the capabilities of machine learning in an embedded setting.

The research was conducted in collaboration with Scania CV AB,
utilising data from their battery labs and electric trucks. The study involved
preprocessing and feature engineering on the data, followed by training
various machine learning models, including feedforward neural networks and
long short-term memory networks. These models underwent training and
evaluation based on their efficacy in interpreting data derived from battery
tests conducted in a laboratory setting. The trained machine learning models
were then adapted to run on the embedded systems within electric trucks, while
considering the limited computational power and memory resources.

Both models were evaluated in a real-world electric truck during driving,
charging, and idling scenarios. The long short-term memory network
exhibited better performance when driving and idling while, the feedforward
neural network performed better during the charging scenario. These findings
are valuable as they demonstrate that machine learning models are the feasible
for real-time applications in battery electric vehicles. It also highlights a
promising area of further research, particularly for battery chemistries that
are not easily modelled by the equivalent circuit model, paving the way for
more intelligent, safe, and efficient battery management solutions in electric
vehicles.

Keywords
Battery Electric Vehicles, Embedded Machine Learning, Lithium-Ion Battery
Cell Modelling, Equivalent Circuit Model, Real-Time Voltage Modelling

ii | Abstract

Sammanfattning | iii

Sammanfattning
Denna avhandling utforskar tillämpningen av maskininlärning för modellering
av battericellsdynamik i batteridrivna elfordon. Det primära målet är
att utveckla och implementera maskininlärningsbaserade modeller, som
uppskattar terminalspänningen i litiumjonbattericeller i realtid på inbyggda
system som finns i batteridrivna fordon. Konventionella metoder, såsom
ekvivalentkretsmodellen, har begränsningar när det gäller att hantera de
komplexa och dynamiska miljöer som finns i batteridrivna fordon. Den
här avhandlingen syftar till att förbättra dessa metoder genom att utnyttja
möjligheterna med maskininlärning i en inbäddad miljö.

Forskningen genomfördes i samarbete med Scania CV AB och använde
data från deras batterilaboratorier och elektriska lastbilar. Studien omfattade
förbearbetning och så kallad feature engineering av data, följt av träning
av olika maskininlärningsmodeller, inklusive feedforward neuronnät och
long short-term memory modeller. Dessa modeller genomgick träning och
utvärdering baserat på data från batteritester som utförts i laboratoriemiljö.
De tränade maskininlärningsmodellerna anpassades sedan för att köras på de
inbyggda systemen i eldrivna lastbilar, med hänsyn tagen till den begränsade
beräkningskraften och minnesresurserna.

Båda modellerna utvärderades i en eldriven lastbil under körning,
laddning och tomgångskörning. Long short-term memory nätverket hade
en bättre prestanda vid körning och tomgångskörning, medan feedforward
nätverket presterade bättre under laddningsscenariot. Dessa resultat är
värdefulla eftersom de visar att maskininlärningsmodeller är användbara för
realtidsapplikationer i batteridrivna elfordon. De visar också på ett lovande
område för vidare forskning, särskilt för batterikemikalier som inte enkelt
kan modelleras med den ekvivalenta kretsmodellen, vilket banar väg för mer
intelligenta, säkra och effektiva batterihanteringslösningar i elfordon.

Nyckelord
Elektriska Fordon, Inbyggd Maskininlärning, Litiumjonbattericeller Modelle-
ring, Ekvivalenta kretsmodell, Realtidsmodellering av Spänning

iv | Sammanfattning

Zusammenfassung | v

Zusammenfassung
In dieser Arbeit wird die Anwendung des maschinellen Lernens zur Modellie-
rung der Dynamik von Batteriezellen in batteriebetriebenen Elektrofahrzeu-
gen untersucht. Das Hauptziel ist die Entwicklung und Implementierung von
auf maschinellem Lernen basierenden Modellen, die die Klemmenspannung
von Lithium-Ionen-Batteriezellen in Echtzeit auf eingebetteten Systemen in
batteriebetriebenen Elektrofahrzeugen abbilden. Herkömmliche Methoden,
wie das Ersatzschaltbildmodell, sind für die komplexen und dynamischen
Vorgänge in batteriebetriebenen Fahrzeugen nur bedingt geeignet. Diese
Arbeit zielt darauf ab, diese Methoden zu verbessern, indem die Möglichkeiten
des maschinellen Lernens in einer eingebetteten Umgebung genutzt werden.

Die Forschung wurde in Zusammenarbeit mit Scania CV AB durchgeführt,
wobei Daten aus deren Batterielabors und Elektro-LKWs verwendet wurden.
Die Studie umfasste die Vorverarbeitung und das Feature-Engineering
der Daten, gefolgt vom Training verschiedener maschineller Lernmodel-
le, einschließlich neuronaler Feedforward-Netzwerke und Long short-term
Memory-Netzwerke. Diese Modelle wurden anhand ihrer Effizienz bei
der Interpretation von Daten aus Batterietests in einer Laborumgebung
trainiert und bewertet. Die trainierten maschinellen Lernmodelle wurden dann
so angepasst, dass sie auf den eingebetteten Systemen in Elektro-LKWs
laufen, wobei die begrenzte Rechenleistung und die Speicherressourcen
berücksichtigt wurden.

Beide Modelle wurden in einem realen Elektro-Lkw während der Fahrt,
beim Aufladen und im Leerlauf getestet. Das Long short-term Memory-
Netzwerke zeigte eine bessere Leistung während der Fahrt und im Leerlauf,
während das neuronale Feedforward-Netzwerk im Ladeszenario besser
abschnitt. Diese Ergebnisse sind wertvoll, da sie zeigen, dass Modelle
des maschinellen Lernens für Echtzeitanwendungen in batteriebetriebenen
Elektrofahrzeugen geeignet sind. Darüber hinaus wird ein vielversprechender
Bereich für weitere Forschungen aufgezeigt, insbesondere für Batterieche-
mien, die nicht ohne weiteres durch das Ersatzschaltbildmodell modelliert
werden können, wodurch der Weg für intelligentere, sicherere und effizientere
Batteriemanagementlösungen in Elektrofahrzeugen geebnet wird.

Schlüsselwörter
Elektrofahrzeuge, Eingebettetes maschinelles Lernen, Modellierung von
Lithium-Ionen-Batteriezellen, Ersatzschaltungsmodell,

vi | Zusammenfassung

Echtzeit-Spannungsmodellierung

Acknowledgments | vii

Acknowledgments
I would like to thank Björn Bökelund, Johan Lundström, and the rest of the
EVBSH team at Scania for their help and guidance throughout the process of
the thesis. I would also like to thank Jose Berengueres for his role as supervisor
for this project.

Stockholm, July 2024
Isak Nyberg

viii | Acknowledgments

Contents | ix

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Current methods . 2
1.2 Problem . 3

1.2.1 Original problem and definition 3
1.3 Purpose . 4
1.4 Goals . 4
1.5 Research methodology . 5
1.6 Delimitations . 5
1.7 Structure of thesis . 5

2 Background 7
2.1 Lithium-ion battery cells . 7

2.1.1 Cell chemistry . 8
2.1.2 Battery modelling 9
2.1.3 Equivalent circuit model 9

2.1.3.1 Internal resistance 10
2.1.3.2 Transient behaviour 10
2.1.3.3 Cell hysteresis 11

2.1.4 Cell state estimation 13
2.1.4.1 Direct estimation 13
2.1.4.2 Book-keeping through Coulomb counting . 14
2.1.4.3 Adaptive book-keeping 14

2.1.5 Electrochemical model 16
2.2 Machine learning . 16

2.2.1 Feature engineering 17
2.2.2 Long short-term memory models 17
2.2.3 Gated recurrent unit 18

2.3 Embedded systems in battery electric vehicles 19

x | Contents

2.3.1 Functional safety . 20
2.3.2 Hardware specifications 20
2.3.3 Embedded machine learning 21

2.4 Related work . 21
2.5 Summary . 22

3 Methods 23
3.1 Research Process . 23
3.2 Data collection . 25

3.2.1 Data features . 25
3.2.2 Data processing . 26
3.2.3 Time-delayed data 27
3.2.4 Data derivatives . 28
3.2.5 Time sequences . 28

3.3 Model training . 28
3.3.1 Model evaluation criteria 29
3.3.2 Training procedure 30

3.4 Hardware testing . 30
3.4.1 INCA testing . 32

3.5 Driving test procedure . 32
3.6 Assessing reliability and validity of the data collected 33

3.6.1 Validity of method 33
3.6.2 Reliability of method 34
3.6.3 Validity and reliability of data 34

3.7 Planned data analysis . 35
3.7.1 Software tools . 35

4 Model Development 37
4.1 Feature engineering . 37

4.1.1 Feature selection . 38
4.2 Model selection . 41

4.2.1 Model architecture 42
4.2.1.1 Feedforward architecture 42
4.2.1.2 Recurrent neural network architecture 42

4.2.2 Effect of model size 43
4.2.3 Hyper-parameters selection 46

4.3 Model implementation . 47
4.3.1 Weights conversion 47
4.3.2 FFNN implementation 49

Contents | xi

4.3.3 LSTM implementation 49

5 Results and Analysis 51
5.1 Lab data testing . 51
5.2 Model simulation . 53

5.2.1 PyTorch and C comparison 55
5.3 Live model testing . 55

5.3.1 Test drive results . 56
5.3.1.1 FFNN test results 56
5.3.1.2 LSTM test results 59

5.3.2 Performance comparison 60
5.3.3 CPU utilisation comparison 62

5.4 Major results . 63
5.5 Discussion . 64

5.5.1 Test drive discussion 64
5.5.2 CPU utilisation discussion 64

6 Conclusions and Future work 67
6.1 Conclusions . 67
6.2 Limitations . 68

6.2.1 Data limitations . 68
6.2.1.1 Data temporal resolution 68
6.2.1.2 Data accuracy and precision 68
6.2.1.3 Data generalisation 68
6.2.1.4 Model initialisation 69

6.2.2 Hardware limitations 69
6.2.2.1 Truck availability 69

6.3 Future work . 69
6.3.1 More extensive testing 69
6.3.2 Accounting for battery health 70
6.3.3 Alternative model targets 70
6.3.4 Model initialisation 70
6.3.5 Alternative machine learning models 70

6.4 Ethical, societal, and sustainability considerations 71
6.4.1 Ethical considerations 71
6.4.2 UN sustainable development goals 71

References 73

xii | Contents

A Machine learning 83
A.1 Perceptron . 83
A.2 Feedforward neural network 84

A.2.1 Back propagation . 84
A.3 Recurrent neural network . 85

B Detailed feature selection 86

C Model source code 91

List of Figures | xiii

List of Figures

1.1 Lithium-ion battery cell equivalent circuit model with an ideal
voltage source E, internal resistance R0, and polarisation RC
unit Rp and Cp. 2

2.1 Circuit diagram of the simplest equivalent circuit model with
internal resistance of a battery cell. Source: Scania 10

2.2 Circuit diagram of equivalent circuit model with internal
resistance and first order RC unit. Source: Scania 11

2.3 State of charge-open circuit voltage curve of battery cell
including the hysteresis effect. Source: Scania 12

2.4 Circuit diagram of equivalent circuit model incorporating
all components, including the hysteresis component Hys,
internal resistance R0, and the RC components Rp and Cp.
Source: Scania . 13

2.5 Illustration of adaptive book-keeping with Kalman filter. The
model has an internal state that is updated based on time
and the measured current draw. This model produces an
estimate for the terminal voltage, which is subtracted from
the measured terminal voltage. The result is then multiplied
by the Kalman gain vector, producing the new internal state
including a new state of charge [23]. 16

xiv | List of Figures

2.6 Illustration of the internal workings of an LSTM unit,
including the forget gate, input gate, and output gate, and the
transfer functions: sigmoid (σ) and hyperbolic tangent (tanh).
The LSTM unit receives three inputs: the previous cell state
Ct−1, the current input Xt, and the previous hidden state ht−1.
The outputs of the LSTM are the updated cell state Ct and the
new hidden state ht, where the hidden state also serves as the
output data. In cases where the output data Yt has different
dimensions than the desired output, a simple linear layer can
be placed to reduce the dimension of the output data and the
desired output shape [35]. 18

2.7 Illustration of the structure of a gated recurrent unit including
the update gate and reset gate. The model has two inputs ht−1

and Xt and the two outputs ht and Yt 19
2.8 Photograph of a battery management unit used in Scania’s

electric trucks. 20

3.1 Visual illustration of research process from data collection to
test drive in truck. 24

3.2 Subset of terminal voltage data over a 60 hour period. On the
y-axis, the terminal voltage of the battery cell is plotted with
respect to time. The hue of the line represents the SOC of the
cells at the given time, with red colours being high SOC and
blue being low SOC. The test consists of periods of charge
and discharge of the battery with both continuous current and
shorter periods of high current, with time in between for the
battery cell to relax. Source: Scania 25

3.3 Illustration of dynamic voltage behaviour over a period of
high current discharge, for instance a strong acceleration of
a battery electric vehicle. Source: Scania 26

3.4 Setup of hardware used for testing and diagnostics. In order
from left to right, controller area network connector (1),
battery management unit (2), Trucks Diagnostic Tool (3), and
24V power supply (4). 31

3.5 Screen image of the INCA software with spoofed signals.
Source: Scania . 32

4.1 Heatmap of correlation between reduced set of features. All
coefficients are multiplied by 100 and lies in the range 100-0
instead of 1-0. 38

List of Figures | xv

4.2 Violin plot of the percentage improvement over the baseline
when adding new a feature in isolation to a linear regression
models. 40

4.3 Violin plot of each improvement for the features i, t, soc, iα=0.0001,
iα=0.001 di and dtα=0.0001 over the initial baseline 41

4.4 Performance of models of difference layer size with respect to
the validation loss using the MSE. The x-axis displays the size
of the hidden layers in the model using a logarithmic scale,
while the loss is shown on the y-axis (a lower loss indicates
better performance). The dashed red horizontal line represents
the performance of the linear regression model, and each line
represents a model subject to changes in the size of the hidden
layer. The highlighted area behind each line shows the spread
of the standard deviation over the 5-fold cross-validation. The
FFNN models are marked with numbers indicating the total
number of layers in the model. The clear trend observed is
that as the size of the models increases, the loss decreases,
indicating better performance. 44

4.5 Performance of models of different number of weights with
respect to the validation loss. The vertical red line represents
the approximate number weights (single precision floating
point numbers) that the model can use give the constraints
of the battery management unit as discussed in Section 2.3.2.
The horizontal line is the performance of the previously
established linear regression model. 45

4.6 Random sweep over the amount of weight decay for LSTM
and FFNN using the procedure described in Section 4.2.3. . . 46

4.7 Graphical illustration of LSTM C implementation. The cell
and hidden state represent the internal state of the LSTM,
while V ectorA and V ectorB are temporary vectors used to
store intermediary values. The final hidden state is the output
of the entire model. 49

xvi | List of Figures

5.1 Subset of model estimation on the testing data.The tempera-
ture during this test subset hovered around 30± 5◦C. The cell
was charged to 100% SOC and discharged to 10% in bursts
of approximately 50A, repeating this cycle three times over
about ten hours each. After the third cycle, the cell was fully
discharged to 0% SOC, leading to a voltage collapse visible
around the 31-hour mark. Source: Scania 52

5.2 Simulation of the LSTM and FFNN with real driving data,
with corresponding features. About 80 minutes of real driving
data is used as the input to the Scania simulation software.
The first two subplots of the figure show the measured and
estimated terminal voltage for the two models. Third subplot
of the figure shows the inputs given to the models. The SOC
started at 79% and decreased to 66% over the course of the
drive. The temperature remained steady at approximately
17◦C. The current drawn from the battery is shown by the
blue line, while the orange and green lines represent the
exponential decay for different values of alpha. Source: Scania 54

5.3 Test drive of FFNN and measured voltage for a single battery
cell for each driving test. The FFNN model (dashed green
line) is compared with the measured voltage (solid blue line).
The first subplot shows the full test drive, with the driving,
charging, and idling sections are separated by the vertical
grey lines. Between the driving and charging section there
is a period of time which was discounted as the truck was in
the process parking and the charger was activated. The next
subplot isolates the driving section, followed by a combination
of the charging and idling sections. 57

5.4 Test drive of LSTM with measured voltage for a single battery
cell for each driving test. The layout of the figure is the same
as in Figure 5.3, with the exception that this time the green
line represents the LSTM model. 59

5.5 Violin plot of mean absolute error of each battery cell for
different models and test types. Each element in the figure
includes a box plot of the mean and interquartile range of
the data, while the shape of the violin indicates the spread of
the data from the different cells. The different test types are
different parts of the test drive. The combined test is using the
entire test drive as a single dataset 61

List of Figures | xvii

A.1 Perceptron with inputs, weights, transfer function and output. . 83

B.1 Heatmap of coefficient of correlation between all features. All
coefficients are multiplied by 100 and lies in the range 100-0
instead of 1-0. 87

B.2 Violin-plot of features with their corresponding improvement
with base features i, t, soc and iα=0.0001 88

B.3 Violin-plot of features with their corresponding improvement
with base features i, t, soc, iα=0.0001 and iα=0.001 89

B.4 Heat-map of features with their corresponding improvement
with base features i, t, soc, iα=0.0001, iα=0.001 and di 90

xviii | List of Figures

List of Tables | xix

List of Tables

2.1 Cell voltage for different cathode materials. Source Nitta
et al., [15] . 9

2.2 Hardware limitations of the project imposed by the battery
management unit. 21

5.1 Comparison of mean squared error and mean absolute error
for the best FFNN and LSTM models on lab data. The unit
of the mean absolute error is millivolt. The 95% confidence
interval was calculated on the mean absolute error using the
t-distribution. 52

5.2 Mean absolute error comparison of PyTorch and C imple-
mentations of the LSTM and FFNN models when running
inference on the same data. All values are in millivolt. 55

5.3 Absolute error and 95th percentile error for the FFNN and
LSTM for each test and individual cell over the driving,
charging and idling period of the test-drive. The entire test-
drive is shows in the combined row. All values are in millivolt. 62

5.4 CPU utilisation of 1Hz and 10Hz loops for FFNN, LSTM,
and Baseline. The baseline is the utilisation of the CPU when
the battery management unit is running its existing modules.
The FFNN and LSTM are added in isolation in addition to the
existing modules that are running on the battery management
unit. The utilisation was measured as the maximum utilisation
over a 5 minute period. A lower utilisation is better. 63

xx | List of Tables

Listings | xxi

Listings

4.1 Code to calulate performance of different features 39
4.2 Python code that takes a pytorch model-weights and returns a

string of the weights formatted as C code 48
C.1 Python code of the three layer FFNN and LSTM pytorch classes 91

xxii | Listings

List of acronyms and abbreviations | xxiii

List of acronyms and abbreviations

ADAM Adaptive Moment Estimation
AMD Advanced Micro Devices

BEV battery electric vehicle
BMU battery management unit

CPU central processing unit

ECM equivalent circuit model

FFNN feedforward neural network

GPU graphics processing unit
GRU gated recurrent unit

IBM International Business Machines Corporation
INCA Integrated Calibration and Application Tool
ISO International Organisation for Standardisation

LSTM long short-term memory

MAE mean absolute error
MDA Measure Data Analyser
ML machine learning
MSE mean squared error

OCV open circuit voltage
ONNX Open Neural Network Exchange

RAM random access memory
ReLU rectified linear unit
RNN recurrent neural network

SDG Sustainable Development Goal
SOC state of charge

xxiv | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

This thesis investigates machine learning (ML) methods for modelling the
voltage across the terminals of the battery cells in a battery electric vehicle.
Scania, the host company, is dedicated to electrifying their trucks to support
the transition to a greener transport industry. One significant challenge in
this transition is the real-time modelling of the battery state. To address this
challenge, this thesis will leverage battery data from Scania’s testing facilities
to train a neural network capable of running in real time on the embedded
battery management unit within their electric trucks. The findings of this study
may suggest a viable alternative to the currently used equivalent circuit model.

1.1 Background
It is estimated that 16 million electric cars are in operation today, representing
9% of annual car sales [1], resulting in billions of battery cells currently
in service [2]. The Lithium-ion battery is the standard choice of battery
chemistry in battery electric vehicles due to their high capacity, energy
density, and long life cycle compared to other battery-chemistries. It is
estimated that one-third of all batteries consist of lithium-ion cells [3]. These
batteries comprise many individual battery cells connected in series and in
parallel to supply sufficient voltage and current output. Due to the energy
usage characteristics in battery electric vehicles, there is a need to monitor the
status and health of these batteries, both from a safety perspective and from a
general functionality perspective. This monitoring includes information such
as state of charge (SOC), state of health, cycle count, cell temperature, cell
current, terminal voltage, and various other factors. These factors can indicate
whether the battery is functioning correctly, to ascertain when the battery is

2 | Introduction

due for disposal, and for fault detection such as lithium dendrites∗ or short
circuits [4].

1.1.1 Current methods
A common method for modelling the characteristics of lithium-ion cells is
through the equivalent circuit model. The equivalent circuit model is an
electrical circuit composed of ideal components, which when combined,
closely mimic the real behaviour of a lithium-ion cell. A widely used approach
involves using a combination of a voltage source, capacitors, and resistors (RC
circuit) to simulate the transient voltage characteristics of the battery cell [5].
An example of a first-order model with only one RC unit is shown in Figure 1.1.

E

R0 Rp

+

Cp −

Vk

Figure 1.1: Lithium-ion battery cell equivalent circuit model with an ideal
voltage source E, internal resistance R0, and polarisation RC unit Rp and Cp.

The equivalent circuit model shown in Figure 1.1 has the advantage of
being easy to create, as the values for R0, Rp, and Cp can be parameterised.
Once created, calculations are straightforward while providing good accuracy
[5]. However, this idealised circuit struggles to adapt to more dynamic
environments where factors such as air-conditioning, regenerative braking,
and the power draw from internal components introduce noise that is too
complex for the equivalent circuit model approach to model. This can be
mitigated to some extent by introducing additional RC units, albeit at the
expense of increased computational cost [6].

The modelling of the batteries in battery electric vehicles often occurs on
embedded systems called battery management unit. These microcontrollers
are responsible for the battery management and must be safety certified [7].

∗Deposition of lithium to the anode that can affect cell capacity and cause short circuits

Introduction | 3

1.2 Problem
With the increasing use of lithium-ion battery cells in more complex
applications such as battery electric vehicles, it becomes increasingly
important to accurately manage and monitor these battery systems. Over time,
as the battery is used, its total capacity decreases due to cell deterioration.
Once the capacity falls below 80% of its original capacity, it is considered to
have reached the end of life [8]. Using the battery beyond this point can lead
to decreased system performance or even dangerous scenarios such as thermal
runaway or fires [8]. Therefore, metrics such as SOC, state of health, and cell
deterioration are used to ensure reliable and safe operation to fully utilise the
battery until the end of its lifetime. These metrics are crucial for accurately
predicting when a battery cell has reached its end of service, which is key to
maintaining safe vehicle operations and calculating the total cost of operations.

Closed loop methods such as Coulomb counting∗ do not provide sufficient
accuracy over a longer period of variation in currents as even the smallest
imprecision in measurements will accumulate over time. Current state of the
art proposes various solutions to this problem. One approach is to increase the
order of the equivalent circuit model by adding another RC unit, which incurs
a more complex calculation and parameter estimation process, or alternatively
by polynomial fitting using genetic algorithms [9]. Another approach involves
using a sophisticated electrochemical model of the battery cell [10]. However,
due to the very limited computational resources of an embedded battery
management unit used in a battery electric vehicle, these approaches are either
too complex to be practical in a real-time setting or not advanced enough to
provide an accurate measure of the battery cell’s internal state.

1.2.1 Original problem and definition
This thesis will answer the following research question: How can a machine
learning model representing a powertrain propulsion battery cell be developed
and effectively integrated into an on-board battery management unit in a
battery electric vehicle?

The research question can be split into multiple smaller questions of
interest:

• What machine learning model achieve the lowest mean squared error
∗Measuring the net flow of electric charge in and out of the battery over time by integrating

the current with respect to time.

4 | Introduction

loss when modelling the voltage characteristics of a lithium-ion battery
cell?

• How can a machine learning model be adapted to run on an electronic
control unit?

• Which of the examined machine learning models is best suited for
adaptation to the electronic control unit?

1.3 Purpose
The purpose of this thesis is to improve the current methods of monitoring
lithium-ion battery cells in embedded systems in battery electric vehicles.
From the perspective of Scania CV AB, this project aims to enhance
their current methods by introducing a more accurate way of modelling
their powertrain battery cells on their onboard battery management unit.
Additionally, this thesis will contribute new research into both the modelling
of lithium-ion batteries and the use of machine learning models on embedded
platforms with limited computational resources.

1.4 Goals
The goal of this project is to create a machine learning model of a lithium-ion
battery cell with accuracy equal to or superior to that of the equivalent circuit
model, and then implement this model on an electronic control unit.

This has been divided into the following sub-goals:

• Conduct a study on the current research into monitoring methods for
lithium-ion battery cells.

• Identify a machine learning model that can accurately simulate and
predict the behaviour and characteristics of lithium-ion battery cells.

• Develop a methodology or framework for adapting machine learning
models to be efficiently executed on a battery management unit with
limited computational resources.

• Evaluate the performance, efficiency, and suitability of various
machine learning models to determine the most appropriate model
for implementation in a battery management unit for real-world
applications.

Introduction | 5

1.5 Research methodology
Parts of this thesis will contain a literature study on the current academic
work within the topics of lithium-ion battery modelling and machine learning
for embedded systems. This will include research that addresses the use of
machine learning for lithium-ion battery modelling, as well as research into
applied machine learning in battery electric vehicles. These resources will be
sourced from academic journals, as well as internal resources from Scania.

After the literature study, a machine learning model will be developed
using insights gained from the literature review. The model will utilise modern
machine learning frameworks such as PyTorch [11]. It will be trained with
data provided by Scania and benchmarked against the test data as well as a
parameterised equivalent circuit model.

The model will then be adapted to meet the constraints of the battery
management unit and subsequently benchmarked to determine the impact of
the adaptation process from its original framework to the framework on the
battery management unit. Different methods of creating this implementation
will be explored, including the use of the intermediate ONNX representation
[12]. The final model will then be tested in a live setting by flashing the
implementation onto a truck and carrying out a test drive.

1.6 Delimitations
While the model itself needs to be able to run on the embedded battery
management unit with reasonable resource utilisation, the training process
does not have to run on the battery management unit. This thesis will solely
focus on the terminal voltage estimation of the battery cell, and not on the
methods of using it to estimate the SOC.

1.7 Structure of thesis
Chapter 2 presents relevant background information about lithium-ion battery
cells, ML, and the battery management unit. Chapter 3 outlines the
methodology and methods used to train and evaluate the model and its results.
Chapter 4 describes the development progress of the model, explaining the
design decisions made throughout the process. Chapter 5 presents the results
of the model, including both simulations and a test drive. Finally, Chapter 6

6 | Introduction

highlights the key takeaways, limitations, and further research that can be
carried out.

Background | 7

Chapter 2

Background

The background chapter provides the information necessary for understanding
of this thesis, covering topics such as lithium-ion battery cells, their modelling,
particularly the equivalent circuit model, and methods for estimating the cells’
state of charge (SOC). This chapter examines the current methods used to
model a lithium-ion battery, including machine learning approaches and the
electrochemical model. The final section offers a brief introduction to the
battery management unit, discussing the constraints of the hardware.

2.1 Lithium-ion battery cells
The idea of lithium-ion battery cells originated from the Co Corporate Labs
of Exxon in 1972, and the technology has come a long way since entering the
consumer market in 1991 [13]. By 2015, lithium-ion battery cells accounted
for more than 85% of all energy storage systems in use [14]. Lithium-ion cells
consist of two terminals separated by an electrolyte through which lithium
ions can move freely. The anode is the negatively charged terminal, while the
cathode is the positively charged terminal. When the battery is discharging,
the anode releases lithium ions that move through the electrolyte to the cathode
[15]. Going forward the following definitions are used:

Capacity (Q) is the measure of the amount of charge in a battery, measured
in Coulomb. When referring to the capacity of a battery it means the capacity
when fully charged.∗ It is defined by Equation 2.1 where I is a positive current
into the battery.

Q =

∫
I dt (2.1)

∗A battery is fully charged when it no longer accepts positive current at it’s rated voltage.

8 | Background

For a battery cell the state of charge is defined as the percentage of the
battery’s current capacity relative to its capacity when full charged. This is
equivalent to the fuel gauge of a car with an internal combustion engine. This
is a value between 0 and 100 defined by Equation 2.2:

SOC = 100 · Qt

Q
(2.2)

When a battery ages it loses some of its ability to retain charge the capacity
of the battery decreases. The ratio of a battery’s capacity to its nominal
capacity is known as the state of health expressed as a percentage, and is
defined by Equation 2.3.

SOH = 100 · Q

Qmax

(2.3)

2.1.1 Cell chemistry
In the battery, two equilibirum reactions take place: one between the cathode
and the electrolyte, and one between the anode and the electrolyte. The
cathode is made from metal oxides or phosphates, while the anode is typically
made from carbon or silicon-based materials. The two reactions are as follows
[16].

LiMO2
Charge−−−−−⇀↽−−−−−

Discharge
MO2 + Li+ + e− (2.4)

C6 + Li+ + e−
Charge−−−−−⇀↽−−−−−

Discharge
LiC6 (2.5)

Equation 2.4 represents the reaction that takes place between the cathode
and the electrolyte, while Equation 2.5 represents the reaction between the
anode and the electrolyte. These are equilibrium reactions, meaning they
can occur in either direction depending on the concentration of the reagents,
temperature, and other factors. The reaction in the left-to-right direction
indicates the battery charging, while the reaction in the right-to-left direction
indicates the battery discharging. The element M in this context represents
a transition metal, typically Cobalt, Manganese, or Nickel, or a combination
of these [15]. When discharging, the electrons released in Equation 2.5 and
consumed in Equation 2.4 cannot enter the electrolyte; they remain on the
anode terminal.

Placing a conductive circuit between the anode and the cathode allows

Background | 9

these electrons to flow, thereby causing the battery cell to discharge. This flow
generates an electric current and maintains the necessary balance of charge for
the reactions to proceed. In the absence of a closed circuit, the electrochemical
reaction will stop. Applying an opposite voltage across the terminals will
reverse the reaction and cause the battery cell to charge [17].

The cell voltage depends on the combination of cathode and anode
materials [15]. A table of materials commonly used in battery electric vehicles
with their corresponding voltages can be seen in Table 2.1 [15].

Cathode material Average cell potential
LiNi0.33Mn0.33Co0.33O2 3.7 V
LiMn2O4 4.1 V
LiFePO4 3.4 V

Table 2.1: Cell voltage for different cathode materials. Source Nitta et al. [15]

Beyond the values visible in Table 2.1 [15], the voltages can vary
depending on the chemical structure of the material and the different ratios
of each material in the cathode [15].

2.1.2 Battery modelling
The simplest model of a battery cell is as an ideal voltage source, however
under dynamic conditions the electrical behaviour of a battery cell does not
match that of an ideal voltage source. Instead, more advanced models are
used to capture these characteristics. Commonly used lithium-ion battery
cell models include the equivalent circuit model explained in Section 2.1.3,
electrochemical models explained in Section 2.1.5, and machine learning-
based models explained in Section 2.2.

2.1.3 Equivalent circuit model
The battery cell generates both current and potential difference between its
terminals due to the chemical reaction within. However, this reaction has
properties that prevent the battery cell from behaving as an ideal voltage
source. Consequently, a common approach to modelling a lithium-ion battery
in a circuit is the equivalent circuit model. The equivalent circuit model
represents the battery cell as an electronic component that includes an ideal
voltage source to provide the cell’s voltage, along with additional circuit

10 | Background

components that simulate the behaviour of the voltage and current produced
by the chemical reaction within the cell [18, 19].

2.1.3.1 Internal resistance

The chemical reactions occurring within a battery are not perfectly efficient
and result in energy losses, predominantly in the form of heat. In the equivalent
circuit model, this phenomenon is represented by incorporating an internal
resistance for the battery cells [9].

E

R0

+

−

Vk

Figure 2.1: Circuit diagram of the simplest equivalent circuit model with
internal resistance of a battery cell. Source: Scania

Figure 2.1 illustrates the internal resistance as resistor R0. This modelling
is particularly suitable because the rate of chemical reactions within the
battery is directly proportional to the output current. Correspondingly, the
energy dissipated across R0 is also proportional to the current flowing through
this resistor, thereby providing an accurate representation of the internal
resistance’s effect on battery performance [20].

2.1.3.2 Transient behaviour

When there is a sudden spike in current draw from a battery cell, the transfer
of lithium ions between the electrodes exhibits some inertia. This results in
transient behaviour that, in the equivalent circuit model model, is represented
by RC units [21].

Background | 11

E

R0 Rp

+

Cp −

Vk

Figure 2.2: Circuit diagram of equivalent circuit model with internal resistance
and first order RC unit. Source: Scania

As shown in Figure 2.2, the new circuit is constructed with the previous
internal resistance R0 as well as an RC circuit consisting of the resistor Rp and
the capacitor Cp. These are known as the polarisation internal resistance and
polarisation internal capacitance, respectively [9].

Estimating the parameters for these components allows the model to mimic
the battery cell characteristics. The same model can be further improved by
including multiple RC circuits, albeit at the cost of increased model complexity
[22].

The resistance of the resistor and the characteristics of the RC circuit are
dependent on the state of charge (SOC) of the cell as well as the operating
temperature (T) of the entire circuit. This ultimately means that the cell
terminal voltage Vk is a function of I , T and SOC as shown in Equation 2.6.

Vk = f(I, T, SOC) (2.6)

2.1.3.3 Cell hysteresis

Lithium-ion cells exhibit hysteresis, this is observed when a cell is
disconnected after having charged for a period of time, measured voltage will
be higher than expected and it will take some time before it reach its relaxed
open circuit voltage. The same is true after the cell has been discharging; the
measured cell voltage will be lower than estimated [1]. This is illustrated in
Figure 2.3.

12 | Background

Figure 2.3: State of charge-open circuit voltage curve of battery cell including
the hysteresis effect. Source: Scania

In Figure 2.3, the SOC of the battery cell is plotted against the open circuit
voltage of the battery cell. When the cell has been charging (going from
low SOC to high SOC, represented by the green line), the measured terminal
voltage is slightly higher than the expected open circuit voltage (represented
by the grey dotted line). Likewise, when the cell has been discharging (going
from high SOC to low SOC), the measured voltage is lower than expected.
This phenomenon is called hysteresis and cannot be explained by a simple
equivalent circuit model. As a result, a new hysteresis component is added
to the circuit to account for this difference. This final model is displayed in
Figure 2.4.

Background | 13

E

Hys
R0 Rp

+

Cp −

Vk

Figure 2.4: Circuit diagram of equivalent circuit model incorporating all
components, including the hysteresis component Hys, internal resistance R0,
and the RC components Rp and Cp. Source: Scania

2.1.4 Cell state estimation
Accurately determining the SOC is vital to prevent overcharging and excessive
discharging of the cell. Additionally, it helps in determining the state of
health of the cell, assessing the remaining usage cycles, and diagnosing cell
longevity, performance, and degradation [23]. It is important to distinguish the
nominal capacity from the original capacity of the cell, as the cell’s maximum
capacity decreases with time and usage. Unlike temperature and current, the
SOC cannot be directly measured and must instead be derived from historical
data. There are several methods for deriving this value, each offering different
benefits for various use cases [24].

2.1.4.1 Direct estimation

Methods that directly estimate the SOC take a known measurable value of the
battery cell and derive the SOC through specific equations. The SOC can be
estimated from several factors, such as open circuit voltage, current, terminal
voltage, and cell impedance spectroscopy [23].

The open circuit voltage method uses the terminal voltage when the circuit
is open, and there is no current flowing into or out of the cell. This value can
be compared against an state of charge-open circuit voltage curve like the one
seen in Figure 2.3 and illustrated by Equation 2.7.

SOC(t) = OCV (Vt) (2.7)

However, this method does not account for the hysteresis effect discussed
in Section 2.1.3.3. Additionally, to measure the open circuit voltage, the
circuit must be open, which is not feasible in use cases where the battery cell

14 | Background

is continuously under load, such as in a battery electric vehicle. Making an
accurate terminal voltage measurement of a cell is further complicated by the
fluctuations in voltage when the cell is in use [23].

An alternative approach is impedance spectroscopy, which involves
measuring the battery impedances when exposed to a wide range of different
alternating current frequencies and then applying regression techniques to
fit the different impedances, from which the SOC can be inferred [23].
This method is feasible in a laboratory environment but is too advanced to
implement in the context of a battery electric vehicle and will not be considered
in this thesis.

2.1.4.2 Book-keeping through Coulomb counting

Book-keeping methods make use of historical data to account for the exact
amount of charge that has left or entered the cell. The most common method is
Coulomb Counting, which involves measuring the current that enters or leaves
the battery cell and then integrating this value with respect to time to determine
the amount of charge removed from the cell. Because the maximum capacity
of the cell is known, the SOC can be calculated using Equation 2.8 [25].

SOCt = SOCt0 −
∫ t

t0

I(t)

Q
dt (2.8)

In Equation 2.8, the state of charge at time t, (SOCt) is calculated from
the initial state of charge (SOCt0) and the integral of the current in/out of the
cell It divided by the capacity (Q) of the cell [24]. This approach is feasible as
long as the currents can be accurately measured and SOCt0 can be precisely
determined. However, any systematic error in the measurement of the current
will accumulate over time and skew the SOC [23]. In the context of a battery
electric vehicle, the main drawback of this approach is that it is an open-loop
estimation process, where small deviations in measurements add up over time,
causing the resulting SOC estimate to lose accuracy [24].

2.1.4.3 Adaptive book-keeping

The best approach combines book-keeping and adjusts it according to directly
measured values. One such method is the use of Kalman filters [23]. A
Kalman filter is a type of recursive filter that utilises measured current,
voltage, and temperature to update and adjust the SOC. This approach uses the
internal state from the equivalent circuit model (discussed in Section 2.1.3),

Background | 15

updates it based on the measured current, and then refines this result using the
measured voltage. The equation for the update of the internal state is shown
in Equation 2.9 and Equation 2.10

[
SOCt

Ut

]
=

[
1 0

0 e−
ts
τ

]
×

[
SOCt−1

Ut−1

]
+

[−ts
Qn

Rp

(
1− e−

ts
τ

)]× it−1 (2.9)

Ue,t = f(SOCt)− Ut −R0 × it−1 (2.10)

In Equation 2.9, the internal state is a linear function of the previous state
plus a linear function of the current. Equation 2.10 estimates the terminal
voltage based on the state of charge-open circuit voltage and subtracts the
voltage across the RC unit and the voltage over the internal resistance [26].
This is the equivalent circuit model voltage over the terminals. The estimate
of Ue,t can then be compared to the measured terminal voltage Um and used to
adapt the internal state of the battery cell [23]. If the equivalent circuit model
system has more than one RC unit, the internal state vector and matrix can
increase their dimensions to accommodate this [27].[

SOCt+1

Ut+1

]
=

[
SOCt

Ut

]
+

[
KSOC

KU

]
(Um,t − Ue,t) (2.11)

Equation 2.11 is the final step of the process, where the internal state
is updated by taking the internal state of the model and tuning it according
to the difference between the measured terminal voltage and the estimated
voltage, multiplied by a vector called the Kalman gain [27]. The Kalman gain
is parameterised based on the properties of the cell and its internal state.

The adaptive book-keeping method is a closed-loop system that can adjust
itself if the model representing the cell goes out of sync with the measured
values. Note that in Equation 2.11, if Um,t and Ue,t are equal, meaning that the
model is perfectly accurate, their difference is zero, resulting in no alteration
of the internal battery state in that step. This entire process is illustrated in
Figure 2.5.

16 | Background

Figure 2.5: Illustration of adaptive book-keeping with Kalman filter. The
model has an internal state that is updated based on time and the measured
current draw. This model produces an estimate for the terminal voltage, which
is subtracted from the measured terminal voltage. The result is then multiplied
by the Kalman gain vector, producing the new internal state including a new
state of charge [23].

2.1.5 Electrochemical model
The electrochemical model was originally proposed by Doyle et al., in 1993
[10]. This approach addresses the problem from a chemical perspective by
examining the reaction rates of the chemical processes inside the battery
cell. It offers superior modelling and accuracy compared to the equivalent
circuit model in terms of the behavioural dynamics of a lithium-ion battery
cell, albeit at the expense of increased complexity and computational demand
[28]. The model itself is exceedingly non-linear and depends on a multitude
of parameters, making it infeasible for real-time estimations, especially on
limited hardware [29].

2.2 Machine learning
Machine learning is the process of providing a program with a set of
experiences related to a specific task, where its performance can be measured.
If the program improves at the task using these experiences, it is said to learn
[30]. In the context of this thesis, the experiences will consist of historical
battery data containing the battery SOC, temperature, current, and terminal
voltage. The performance measure will be the program’s ability to estimate
the terminal voltage given the SOC, temperature, and current. This section
presupposes a basic understanding of machine learning concepts. A more

Background | 17

in-depth introduction to these general concepts can be found in Appendix A.
The paper will utilise three different machine learning models: long short-
term memory, explained in Section 2.2.2; gated recurrent unit, explained in
Section 2.2.3; and feedforward neural network, explained in Section A.2.

2.2.1 Feature engineering
Feature engineering is part of the preprocessing of the training data used
for machine learning. It involves multiple approaches such as creating
new domain specific features, transforming current features into a more
suitable representation, extracting vital information from an existing feature,
or discarding existing feature that are not believed to be useful. Severson
et al., have successfully employed feature engineering in life cycle prediction
of lithium-ion batteries [31]. The same study was expanded upon by Geslin
et al., in 2023 which suggested that using the most suited features for the task is
essential to create data-driven models that are suitable for real use cases [32].

2.2.2 Long short-term memory models
One example of a recurrent neural network (RNN) is the long short-term
memory (LSTM), which effectively balances learning long and short-term
dependencies in sequential data. LSTMs were first introduced by Hochreiter
and Schmidhuber in 1997 [33]. The LSTM unit consists of three different
gates: the input, forget, and output gates, each serving a specific purpose
in retaining and forgetting data [34]. A diagram of an LSTM is shown in
Figure 2.6.

18 | Background

Figure 2.6: Illustration of the internal workings of an LSTM unit, including
the forget gate, input gate, and output gate, and the transfer functions: sigmoid
(σ) and hyperbolic tangent (tanh). The LSTM unit receives three inputs: the
previous cell state Ct−1, the current input Xt, and the previous hidden state
ht−1. The outputs of the LSTM are the updated cell state Ct and the new
hidden state ht, where the hidden state also serves as the output data. In cases
where the output data Yt has different dimensions than the desired output, a
simple linear layer can be placed to reduce the dimension of the output data
and the desired output shape [35].

The LSTM shown in Figure 2.6 consists of gates with different functions.
The first gate is the forget gate, which controls the amount of the previous cell
state that is retained. Note that the sigmoid function returns a value between
0 and 1, and multiplying the cell value by this sigmoid output will result in a
fraction of the original cell value. The second gate in the process is the input
gate, which combines the hidden state with the new data and uses it to update
the cell state through addition. Lastly, the output gate uses the product of
the cell state and the input data to produce the new hidden state, which is also
the output of the LSTM unit. The updated cell state and hidden state are then
passed as inputs for the next input in the time series [35].

2.2.3 Gated recurrent unit
The gated recurrent unit (GRU) is an RNN similar to the LSTM. It was first
introduced by Cho et al. [36] and was originally used in the context of natural
language processing. Like the LSTM, it adapts to time series data and has an
internal state. It also follows a similar architecture of having gated units that
modulate the information inside the unit. The GRU has a simpler structure

Background | 19

compared to the LSTM [37]. A diagram of a GRU is shown in Figure 2.7.

Figure 2.7: Illustration of the structure of a gated recurrent unit including the
update gate and reset gate. The model has two inputs ht−1 and Xt and the two
outputs ht and Yt

Figure 2.7 shows the structure of the GRU. Unlike the LSTM, the GRU
only has two gates: the update gate and the reset gate. The update gate balances
how much of the input will influence the new state of the GRU as well as what
the unit will output, while the reset gate determines how much of the previous
hidden state ht−1 is retained. The GRU is smaller and faster to train than the
LSTM [38].

2.3 Embedded systems in battery electric
vehicles

Embedded systems are minimal systems consisting of at least a processor,
memory, and some kind of input/output. They are usually part of a larger
system, which may consist of multiple embedded units [39]. Modern vehicles
heavily rely on onboard embedded systems. These systems can have various
tasks in managing different parts of the vehicle; some carry out safety-critical
systems such as anti-lock braking system, while others handle more mundane
tasks such as climate control [40]. This thesis will specifically focus on the
battery management system in Scania’s battery electric trucks.

20 | Background

2.3.1 Functional safety
When it comes to heavy machinery and vehicles such as trucks and buses,
many systems are labelled as safety-critical [41]. This means that the
reliability of the hardware and software must conform to established safety
standards such as ISO 26262 [7]. Despite various suggestions, ISO 26262 does
not yet cover any specifications for machine learning regarding data quality,
model robustness, and model fault detection [42, 43].

2.3.2 Hardware specifications
The battery management unit is the particular embedded system that this thesis
will focus on. The battery management unit used in this project belongs
to the MPC5 ultra-reliable MCU family [44]. The micro-controller itself
has a 32-bit central processing unit (CPU) with support for single-precision
floating-point operations, 16KB data cache (D-Cache), and 512KB random
access memory (RAM). Since the battery management unit has multiple use
cases, the specific task of executing the trained machine learning model will
be allocated approximately 1% of the memory when the task is not executing.
As a result, the entire state of the model may not exceed 5120 bytes, or
approximately 1280 single-precision floating-point numbers.

Figure 2.8: Photograph of a battery management unit used in Scania’s electric
trucks.

Background | 21

CPU 32 Bit
Operating Frequency 200-300 MHz
RAM 512kB
Flash 8000kB
Functional Safety ISO 26262
Maximum Model size 5120 Bytes

Table 2.2: Hardware limitations of the project imposed by the battery
management unit.

2.3.3 Embedded machine learning
From a machine learning perspective, the restrictions of ISO 26262 for
embedded hardware can be detrimental because many machine learning
algorithms achieve efficiency through parallel computation, particularly on
hardware such as graphics processing unit (GPU) [45]. Embedded machine
learning aims to tackle the challenge of running machine learning models on
constrained systems. In 2017, Meta Platforms Inc., together with Microsoft
Corp., released the Open Neural Network Exchange (ONNX) format [12].
The project has since gained widespread adoption from other large technology
companies such as Advanced Micro Devices (AMD), International Business
Machines Corporation (IBM), and Huawei [46]. ONNX allows neural
networks to be formatted in a way that is widely supported by different
frameworks, tools, and platforms [12]. ONNX has a runtime for C [47], which
is a common language of choice for embedded systems. Additionally, there
are open-source projects such as ONNX2C that can compile the ONNX model
into C code [48]. However, this approach is not specifically tailored for low
memory usage, and the extent to which these approaches can be adapted for
the battery management unit will be an area of exploration in this thesis.

2.4 Related work
In recent years, advancements in machine learning have led to new research
using machine learning approaches to model lithium-ion battery cells. This
includes using feed-forward neural networks, convolutional neural networks,
and long short-term memory networks to estimate cell state of health using
voltage, current, and temperature profiles. These techniques have been shown
to outperform conventional methods that use only voltage profiles by up to

22 | Background

25%-58% [49]. It has also been shown that, given sufficient training data
and knowledge of a system, a machine learning model can accurately adapt
and model physical systems [50], either for the purpose of improving existing
models or to create entirely new models [51]. To model the characteristics
of lithium-ion battery cells using ML, current research has employed the
Python library Scikit-learn to predict voltage behaviour [52] and support
vector machines for state of health estimation [53]. These results suggest
that ML is a feasible approach, in addition to the equivalent circuit model,
for accurately modelling battery cell characteristics. Similarly, terminal
voltage, current, impedance, and capacity have been used to estimate the
remaining useful life using LSTM models [54]. The use of support vector
machines has been explored as an alternative to the Kalman filter, as shown
in Section 2.1.4.3, to improve performance [55]. Other researchers have used
combinations of neural networks and teaching learning-based optimisation
to predict both open circuit voltage and terminal voltage, which have shown
to have high accuracy [56]. Other researchers have used machine learning
techniques to model the internal SOC of battery cells [57]. Additionally, other
forms of machine learning have been employed for battery failure detection by
monitoring impending voltage collapse in lithium-ion batteries [58].

2.5 Summary
Lithium-ion battery cells can store chemical potential energy, which is
converted to electrical energy when a circuit is formed between the cell’s
terminals. The electrical behaviour of lithium-ion cells can be modelled using
the equivalent circuit model. The behaviour of the battery cell is used to
determine important properties such as the cell’s state of charge. This approach
can potentially be replaced with a machine learning (ML) model, such as a
feedforward neural network (FFNN), a long short-term memory (LSTM), or a
gated recurrent unit (GRU). This model would need to be capable of running
on the battery management unit inside the battery electric vehicle.

Methods | 23

Chapter 3

Methods

This chapter outlines the methodologies used in this thesis, covering the
research process, data collection, experimental design, and evaluation process.
It also highlights the scientific and engineering skills applied in this project.
The research process described in Section 3.1 details the steps taken: data
collection, preprocessing, feature engineering, model training, selection,
hardware implementation, and real-world testing. The data collection
described in Section 3.2 discusses techniques and ethical considerations,
describing the data features collected. In data processing described in
Section 3.2.2, the methods for preprocessing and feature extraction are
explained, focusing on dynamic and static battery voltage components. The
experimental design described in Section 3.3 outlines the construction and
comparison of various machine learning models based on performance metrics
like mean squared error (MSE), robustness, memory efficiency, and CPU
usage. The reliability and validity is assessed in Section 3.6, discusses
ensuring data and method accuracy and consistency, addressing potential
generalisation issues. The planned data analysis in Section 3.7 explains the
evaluation of model performance using mean absolute error (MAE) and details
the software tools used.

3.1 Research Process
Figure 3.1 shows the steps conducted to carry out this research.

24 | Methods

Figure 3.1: Visual illustration of research process from data collection to test
drive in truck.

Figure 3.1 shows the broad steps taken in this thesis. It begins with the
data collection carried out by Scania. This data is time series data of electric
trucks including battery temperature, voltages, current, and state of charge over
a period of the truck being used. Feature engineering will then be carried
out on the data in order to extract relevant information and expand the input
space. Thereafter an assortment of machine learning models will be trained
on a subset of this data. Another subset of the collected data will be used as
testing data for model selection based on performance. A few of the trained
models will be selected to be implemented on the truck hardware, to ensure
they comply with the computational restraints in both speed and memory
usage. After this implementation it will be compared to the original model to
determine the performance degradation of the adaptation process. This final
model will then also be tested on a truck in a live usage setting.

These are the steps of the project:

Step 1 Collect truck data

Step 2 Pre-process data and divide into training, evaluation and test splits

Step 3 Train each proposed model with the training data

Step 4 Fine-tune model using evaluation data

Step 5 Select a model based on test data performance

Step 6 Implement trained model on hardware

Step 7 Evaluate performance loss in the implemented model

Step 8 Test model implementation on a real truck

Methods | 25

3.2 Data collection
The data used to train the models comes from the battery lab facility at
Scania. This data is very precise because it is collected in a controlled
environment and consists of time series of cell charging and discharging at
different temperatures, sampled once per second. Each sample contains the
state of charge, current in or out of the cell, temperature of the cell, and the
terminal voltage of the cell. There is a total of 18 continuous run where each
run comprises around 100 hours of data. For each run the cells in the test
are acclimated to a specific temperature of a minimum −20◦C and maximum
+45◦C with variations of ±10◦C within the test. From these series, 8 were
from one cell, 4 from another cell, 2 from a third and then the last 4 series
were from unique cells.

An extract of these series can be seen in Figure 3.2.

Figure 3.2: Subset of terminal voltage data over a 60 hour period. On the
y-axis, the terminal voltage of the battery cell is plotted with respect to time.
The hue of the line represents the SOC of the cells at the given time, with
red colours being high SOC and blue being low SOC. The test consists of
periods of charge and discharge of the battery with both continuous current
and shorter periods of high current, with time in between for the battery cell
to relax. Source: Scania

3.2.1 Data features
Cell Current: The cell current was measured with a unit placed between the
cell and the load. It measured between −150A and +150A depending on
whether the cell was charging or discharging. Sometimes the cell was given
bursts of high current, while other times it was exposed to longer periods

26 | Methods

of constant current, as well as sinusoidal patterns to mimic different load
behaviours of a real-world battery-driven truck.
Temperature: The temperature of the environment was moderated for
different runs to examine the effects of various environmental temperatures. It
was measured by a temperature probe placed in close proximity to the battery
cells. One limitation is that the temperature sensor is not placed inside the
cell, and the temperature of the electrolyte may impact the accuracy of the
temperature value.
State of Charge: Since the battery state of charge is not directly measurable,
it was derived through a process called Coulomb counting. The SOC is part
of the internal state of the cell.
Terminal Voltage: The terminal voltage was simply measured across the
terminals with a voltmeter.

3.2.2 Data processing
As mentioned in Chapter 2, a battery cell has both dynamic and static voltage
behaviour. The static voltage can almost entirely be derived from the SOC,
while the dynamic voltage is more difficult to model. The sum of these two
components is the actual terminal voltage. This behaviour is illustrated in
Figure 3.3.

Figure 3.3: Illustration of dynamic voltage behaviour over a period of high
current discharge, for instance a strong acceleration of a battery electric
vehicle. Source: Scania

Methods | 27

Figure 3.3 illustrates an example of dynamic voltage behaviour over a large
current discharge. The blue line represents the open circuit voltage over the
period of the discharge, which is an empirical value based on the SOC. The
orange line represents the terminal voltage observed across the terminals. The
bottom subplot of Figure 3.3 shows the current going out of the battery cell.

Initially, at time t0, the open circuit voltage and measured voltage are
identical as the current is 0A, indicating that the cell is in its relaxed state.
At time t1, a large discharge occurs, causing the measured terminal voltage to
drop significantly below the open circuit voltage. The difference between the
open circuit voltage and the measured terminal voltage is the dynamic voltage.
The dynamic voltage typically has a magnitude of hundreds of millivolts.

At time t2, the discharge current stops and the current returns to 0A. At this
point, the observed voltage will slowly tend towards the open circuit voltage.
The open circuit voltage will also be lower than before since the SOC of the
battery has decreased after the discharge.

This means the models task can be divided into two parts, the first is to
estimate the static voltage and the second more difficult problem is to estimate
the dynamic voltage. If the model can be trained on these two task separately it
should have an easier time adapting to the data, as a result a new target can be
created called DYNE which is the dynamic voltage calculated by subtracting
the static voltage from the terminal voltage DYNE = V − OCV , this is the
value the model should estimate.

3.2.3 Time-delayed data
As part of feature engineering, new features can be introduced using the
existing features. One example of such a feature is the time-delayed current,
where an exponential moving window can be used. This involves creating a
new feature updated for each sample using the formula:

y0 = x0 (3.1)

yt = (1− α)yt−1 + αxt (3.2)

In Equation 3.1 the initial value of y0 is set to the first value of x. For every
subsequent time step, the value of yt is updated using the value of xt and the
previous yt−1, using the coefficients based on the value α ∈ (0, 1). The value
of α can be adjusted to determine the amount of change in y for each t. In the
Python library Pandas, this can be implemented with the ewm function [59].
The values for α used in this thesis are (0.0001, 0.001, 0.01, and 0.1). This

28 | Methods

allows the model to use historical state without having an internal memory
when making estimations. The size of the input vector increases with each
additional feature, resulting in greater model complexity. The benefit of using
this approach is that the implementation does not need to store long samples
of historical data and instead only needs a single number to convey historical
information.

3.2.4 Data derivatives
In addition to time delays, derivatives can be taken with respect to the time
period of the data by subtracting each data sample from the value of the
previous one. For example, if the current at time t is 100mA and at t − 1

it is 75mA, the resulting derivative is ∂i
∂t

= it − it−1 = 100 − 75 = 25mA.
This method can be applied to each of the features i, SOC, and T . This value
can be combined with the exponential moving window time delay approach to
yield more information.

3.2.5 Time sequences
The LSTM and GRU both work on time series data. The training data
consists of multiple hours of recordings, which will be split into sequences
of continuous data. The optimal length of these sequences will be determined
by searching for the length that yields the best performance during training.

3.3 Model training
Multiple architectures will be constructed, including linear regression, FFNN,
LSTM, and GRU. Each model will be trained on the same training and
evaluation data and benchmarked using the same test data. The linear
regression and FFNN models will be given the data as simple feature-target
pairs, while the LSTM and GRU models will be given the features and targets
as continuous time sequences. The models will be developed with the PyTorch
library [11] with various numbers of hidden layers. Each model will use
validation data for early stopping, the Adaptive Moment Estimation (ADAM)
optimiser, and weight decay. The code for the structure of each model is
available in Appendix C. The trained model will be adapted for the specific
hardware used by Scania, as mentioned in Section 2.3.2. In the final step, the
model will also be tested on the Scania truck, with the methods outlined in
Section 3.5.

Methods | 29

3.3.1 Model evaluation criteria
The main model evaluation criterion used in the early stages of evaluation
will be the mean squared error (MSE). MSE is a widely used loss function
in machine learning that measures the average of the squares of the errors
or deviations. Specifically, it quantifies the difference between the estimated
values output by a model and the ground truth.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.3)

In Equation 3.3 ŷi is the value estimated by the model, and yi is the ground
truth for i’th sample. n represent the total number of data samples.

In addition to MSE, it is essential for applications such as fault detection
that the models maintain consistent performance without significant outliers.
Therefore, robustness is also a critical evaluation criterion. Additionally,
the deployment of these models in embedded hardware within trucks, must
be memory-efficient and not consume excessive amounts of CPU resources,
especially when making estimations across multiple battery cells. In essence,
the models will be evaluated based on multiple criteria.

– Mean Squared error loss: The average performance of the model in
terms of estimation accuracy.

– Robustness: Assessed by the model’s 95th percentile error, focusing
on minimising outliers to ensure reliable fault detection.

– Memory efficiency: The total size of the model in terms of number
of weights must be considered to fit the constraints of the embedded
hardware.

– CPU utilisation: The computational efficiency of the model, ensuring
that it does not over-utilise CPU resources, particularly when processing
multiple battery cells in sequence. This is measured as the increase in
CPU utilisation over the baseline.

The CPU usage will be specific to the embedded hardware and will not be
measurable until the trained model is implemented in embedded C. Therefore,
it will only be measurable after a model has been selected and implemented
for that purpose. The memory efficiency will be preemptively determined by
the sizes of the models that are selected, this will be done based on the number
of weights in the models.

30 | Methods

3.3.2 Training procedure
The 18 data series will be separated into training, evaluation and testing
groups. 15 series will be used for training, 2 will be used for validation
and 1 will be used for final testing. When training the FFNN a single data
sample from the training data was used at a time, while the two recurrent neural
network will be given a sequence of 1000 continuous data samples as inputs.
The evaluation data will be used as an early stopping indicator to prevent
overfitting of the models. The testing data will serve as the final measure of
accuracy and will be used to compare different model architectures. When
evaluating and testing the models, the trained model estimates the voltage over
the entire testing/evaluation data series and then the MSE is taken. For the
FFNN this involves sequential estimates of each time step in the data, wile the
recurrent neural network is given the entire series as a single sequence and
thus updates the hidden state throughout. The first 1000 predictions are not
taken into consideration for either model in order to account for the exponential
decay filter and also to ensure the hidden state of the recurrent neural networks
is given some time to adapt. As mentioned in Section 3.2 the different series
have different temperatures. All the evaluation and test series were conducted
at 30 ± 5◦C as this is the expected operating temperature of the battery. The
two evaluation and testing series were also taken from three different cells.

3.4 Hardware testing
When implementing the model on hardware, the ability to gauge its execution
becomes limited. At this point, there is no way of altering the internal state of
the model without spoofing input signals. However, the model can still run to
determine the load on the CPU. This load will be measured when estimating
the voltage of all 180 battery cells inside a module.

Methods | 31

Figure 3.4: Setup of hardware used for testing and diagnostics. In order from
left to right, controller area network connector (1), battery management unit
(2), Trucks Diagnostic Tool (3), and 24V power supply (4).

The setup allows the embedded implementation to be run on the battery
management unit in a controlled setting to verify that the model is stable and
running without issues. The battery management unit can be interfaced with
to measure performance in terms of CPU and memory usage.

In this context, CPU utilisation is defined as the amount of time used for a
number of tasks to finish execution with respect to the amount of time they
are allotted. For instance, if there are 5 tasks that are allotted 100ms and
they all finish after 38ms, the utilisation is 38%. If the runtime of the tasks
exceed the 100ms it is allotted, its deadline is violated, which can severely
impact the performance of all systems that depend on or run on the battery
management unit. Therefore, it is crucial that CPU utilisation is low and does
not risk exceeding the time slot it is given. The tasks themselves are grouped
into loops that the system is designed around. The separate loops are based
on the number of times they execute per second: the 1Hz, 10Hz, 100Hz, and
1000Hz loops. The loops with higher frequency run with a higher priority
until completion, while loops with lower frequency yield until all loops with
higher frequency have finished before executing. As a result, if a new module
is added to the 10Hz loop, the 1000Hz and 100Hz loop are unaffected, while
the 1Hz and 10Hz loops may observe higher CPU utilisation. Because both
the LSTM and FFNN models execute in the 10Hz loop, they will only affect
the performance of the 10Hz and 1Hz loops.

32 | Methods

3.4.1 INCA testing
Because the model is running on the hardware, it becomes increasingly
difficult to debug. A software called Integrated Calibration and Application
Tool (INCA) [60] can be used to spoof signals to the battery management
unit in real-time in order to observe the model’s behaviour when executing on
the battery management unit. INCA allows for the behaviours to be verified
visually as a sanity check before the model is flashed onto a truck for driving.

Figure 3.5: Screen image of the INCA software with spoofed signals. Source:
Scania

Figure 3.5 shows the INCA software in use. The colourful graphs display
the output voltage estimation for a selection of cells. On the right-hand side,
spoofed measurements can be entered to observe how the model behaves when
custom values for temperature, SOC, or current are input. INCA does not
simulate the measured voltage, so the values in the graph cannot be compared
to any ground truth, and the performance can only be validated by visual
inspection. Once the model behaves as expected, it is ready to be tested in
a live setting.

3.5 Driving test procedure
Since the model is expected to work in various scenarios, each needs to be
tested to determine the model’s ability to generalise from the lab data to a live

Methods | 33

setting. After the model is flashed onto the battery management unit, it will
be tested in three separate scenarios listed below.

1. Driving test: The model will be tested by driving the truck on the test
track at the Scania facilities in Södertälje. The track includes both uphill
and downhill parts, as well as turns and straights. This type of driving is
characterised by mostly negative but highly varying currents, generally
decreasing SOC, and increasing battery temperatures.

2. Charging test: After the driving test, the truck will be connected to a
charger for a period of time. The charging test is characterised by high
but constant positive currents, high temperatures, and increasing SOC.

3. Idle test: After charging, the truck will be disconnected and remain
stationary to measure the behaviour of the model as the batteries tended
towards relaxation. This test is characterised by very low currents,
constant SOC, and decreasing battery temperatures.

3.6 Assessing reliability and validity of the
data collected

The data collected in the lab is measured in a controlled enrolment with precise
equipment and runs little risk of being a source of error. The main issue
is one of generalisation, where the scenarios used to test the cells in a lab
may not accurately represent the cell behaviours when the truck is driving
in a real setting with respect to the currents, temperature, and usage of SOC.
Additionally, the state of health of the battery in the lab may not be an accurate
representation of what can be expected in a real setting, thus potentially giving
unreliable results when used as training data. The series from different cells
may also have differences in behaviour between them.

3.6.1 Validity of method
The validity of the methods is supported by the multiple steps of model
evaluation. The selected model was first tested using the PyTorch framework
with truck data, followed by testing the same C implementation on the
hardware test bench. Subsequently, the model was tested in INCA as well
as in a real-time setting on the Scania truck. These separate steps ensured
that the model’s performance remained consistent. Additionally, testing the

34 | Methods

model on the truck in real time serves as a good way of examining the model
in similar environment to where the model would be deployed.

3.6.2 Reliability of method
The initial data collection was carried out by the testing team at Scania, which
consists of experienced engineers who can make accurate measurements using
high-quality equipment. The feature engineering was conducted using a
linear regression model, which is different from the final model architecture.
Therefore, there are concerns that the chosen features suitable for the linear
regression model may not be ideal for the final, more complex model. This
is ultimately a limitation since training each complex model for each feature
over multiple trials is a time-consuming task, and thus a simple baseline model
was used instead. During training, each model will be tested at multiple
stages throughout the development process to ensure that performance remains
reliable. This will be combined with cross-validation to reduce variance in
training conditions.

3.6.3 Validity and reliability of data
During the research, different types of data were collected, including model
performance, model size, CPU utilisation, and driving data. Each of these
has varying levels of validity. Firstly, the model size is trivial to calculate
based on the number of weights. Model CPU utilisation will be measured
using the INCA software; the measured value is the maximum utilisation over
a period of time. Naturally, there will be some variation in utilisation due
to random fluctuations and balancing of all the tasks running on the same
battery management unit, thus a sufficiently long period of time needs to be
monitored to obtain an accurate and generalisable result. Model performance
can be calculated using any loss function, provided the data used is sufficiently
accurate. This accuracy is limited by the precision of either the simulation
software or the data used to measure model performance.

In terms of the reliability of the data, the main concerns arise from the
actual test drive in the truck. Since multiple factors can affect the model
during driving, these need to be taken into account when making conclusions
regarding the data collected. These factors include the ambient temperature,
the initial SOC of the truck, the driving style, and the relation between the
amount of time spent driving, charging, and idling.

Methods | 35

3.7 Planned data analysis
The data collected will be analysed to evaluate the model’s performance.
When evaluating the results, the mean absolute error (MAE) will be used to
provide a meaningful measure of the model’s accuracy. The results will be
analysed with respect to the simulation in Section 5.2 and the test drive in
Section 5.3.

3.7.1 Software tools
Various tools will be used throughout the research process. Initially, the
following Python libraries will be used for training the model: Numpy,
pandas, and pytorch. To create graphs, the following tools will
be used: matplotlib and seaborn. To simulate the battery cell,
proprietary software at Scania will be used. When interfacing with the battery
management unit, the software Integrated Calibration and Application Tool
(INCA) will be utilised. Lastly, the software Measure Data Analyser (MDA)
will be employed to process the data from the truck.

36 | Methods

Model Development | 37

Chapter 4

Model Development

In this chapter, the model development is discussed, starting with feature
engineering for identifying the most relevant features for the models, as
detailed in Section 4.1.

Next, model selection is conducted in Section 4.2, where different neural
network model architectures are examined, including feedforward neural
network (FFNN), long short-term memory (LSTM), and gated recurrent unit
(GRU) models. The architecture of each selected model is discussed in
Section 4.2.1.

Finally, the implementation of the selected model in embedded C is
discussed in Section 4.3. This includes the process of converting model
weights from Python to C, and the specific considerations for implementing
FFNN and LSTM models in embedded systems. The detailed implementation
schematic for the LSTM model is illustrated in Figure 4.7.

4.1 Feature engineering
Following the creation of features in Section 3.2.2, the next task is to determine
which of these are the most salient and should be selected for the models. After
the features are developed, the number of features needs to be explored by
checking feature correlation. We want to minimise the number of features
in order to reduce the computational cost, so introducing a new feature
whose information is already covered by another feature is redundant and may
introduce issues with multicollinearity [61]. The correlation between all the
features can be seen in a correlation matrix in Figure B.1 in Appendix B. After
removing correlated features a correlation matrix of the remaining features is
visible in Figure 4.1.

38 | Model Development

Figure 4.1: Heatmap of correlation between reduced set of features. All
coefficients are multiplied by 100 and lies in the range 100-0 instead of 1-0.

The features from Figure 4.1 were then further examined in order to find
the best performance in Section 4.1.1.

4.1.1 Feature selection
Before training a complex model, the relevant features created in Section 3.2.2
need to be determined. This was done using a simpler linear regression model.
The model was provided with the base three features t, i, and soc. The
performance of this model was measured and became the baseline. Thereafter,
another model was given one additional feature at a time and trained. The new
performance was measured again, and the relative increase as a percentage
was calculated. This process was repeated with each engineered feature to
determine which ones provided the model with the most useful information.

The data used was a random sub-sample of 1,000,000 data points from the
training data, and the performance was measured against 1,000,000 unseen
data points. This method of training the linear regression model is showcased
in Listing 4.1.

Model Development | 39

base_features = ['soc','t','i']
extra_features = [

'soc_0001', ... 'soc_75',
't_0001', ... 't_75',
'i_0001', ... 'i_75',
'dsoc', ... 'dsoc_75',
'dt', ... 'dt_75',
'di', ... 'di_75',

]
y = df['dyn']
y_test = df_test['dyn']

results = {}
for feature in extra_features:

X = df[base_features + [feature]]
X_test = df_test[base_features + [feature]]
model = LinearRegression(X,y)
results[feature] = model.score(X_test, y_test)

print(results)

Listing 4.1: Code to calulate performance of different features
This process was repeated 5 times, and the average increase in performance

was used as the final improvement. The results of the search for relevant
features are visible in Figure 4.2 as a heat-map. The value of each box
represents the percentage increase in performance over the baseline.

40 | Model Development

Figure 4.2: Violin plot of the percentage improvement over the baseline when
adding new a feature in isolation to a linear regression models.

In Figure 4.2, the best improvement over the baseline was achieved with the
current feature (i) having an exponential decay with an alpha of α = 0.0001,
which resulted in an average decrease in loss of 12% over the baseline. From
the accompanying violin chart, it is also apparent that this improvement is
statistically significant as the 1.5x interquartile range lies above the baseline.
This is reasonable since the feature provides the model with information about
the long-term usage of the battery cell, for example, whether the battery has
been continually discharging or charging for a long period of time. However,
the same feature does not differentiate between long periods of zero usage and
the same time period of high oscillating use.

The next step is to repeat the same process but with iα=0.0001 added as a
base feature in order to determine which next feature should be added. The
results of each iteration are shown in Appendix B, while the overall results for
each feature are shown in Figure 4.3.

Model Development | 41

Figure 4.3: Violin plot of each improvement for the features i, t, soc, iα=0.0001,
iα=0.001 di and dtα=0.0001 over the initial baseline

Figure 4.3 shows the percentage improvement over the original baseline for
each added feature. The best features tended to be those related to different
aspects of the current, which is logical as it is the feature with the most
variation and likely the one that affects the terminal voltage the most in the
short-term. The feature dtα=0.0001 was decided to be the stopping point since
it did not provide significant improvement over the previous features. The
final features selected for the model are i, t, soc, iα=0.0001, iα=0.001, and di.

4.2 Model selection
Once the features of the model are decided, the structure and architecture
of the model must be examined in order to select the most feasible models
configuration. Initially, different model architectures are discussed in
Section 4.2.1, including long short-term memory (LSTM), gated recurrent
unit (GRU), and feedforward neural network (FFNN) models. Key structural
elements such as layer size (width) and number of layers (depth) are
also examined. Next, Section 4.2.1.1 delves into the FFNN architecture,
highlighting the impact of varying layers and nodes, as well as the importance
of regularisation to prevent overfitting. Section 4.2.1.2 then addresses LSTM
and GRU models, emphasising their ability to manage temporal sequences

42 | Model Development

with internal memory. Finally, Section 4.3 discusses the implementation of
selected models in embedded C, covering the conversion of model weights and
specific considerations for deploying FFNN and LSTM models in embedded
systems, as illustrated in Figure 4.7.

4.2.1 Model architecture
In Chapter 2, three main model architectures were examined: LSTM,
GRU, and FFNN. Each model comes with a set of hyperparameters that
significantly impact its performance. When running the model, there are
two main parameters that determine the model characteristics in terms of
implementation: width and depth. The width refers to the size of each layer in
the model, while the depth refers to the total number of layers.

The initial sizes of hidden layers that will be used are 8, 16, 32, 64, 128, and
256 nodes to provide a range of sizes spanning multiple orders of magnitude.
The number of layers for the FFNN will range from 0 (linear regression) to 4
layers.

4.2.1.1 Feedforward architecture

The feed-forward neural networks have two main important factors to consider
in terms of structure: depth and width. Depth refers to the number of layers,
and width refers to the number of nodes in each layer. Additionally, there is
the regularisation factor, which is used to prevent the model from overfitting.
Notably, the model will not contain an internal memory, and the only source of
time dependency will be derived from the time-dependent features determined
in Section 4.1.

4.2.1.2 Recurrent neural network architecture

The LSTM and GRU models also have concepts of depth and width. However,
due to the significant increase in size, only single-layer LSTM and GRU
models will be considered for this report. Instead, the effects of regularisation
and the size of the hidden layer will be examined. Compared to the FFNN, the
two recurrent neural networks will have a concept of internal memory and, as
a result, will be less sensitive to variations in the input data if trained correctly.

Model Development | 43

4.2.2 Effect of model size
In order to gauge the complexity the model needs to have in order to solve
the problem, a sweep over model type and complexity was carried out. Each
model was trained using 1 million data samples from the training dataset and
then tested on an entire dataset of approximately 50,000 samples. Each model
was given a total of 30 epochs to train using the ADAM optimiser. For the
LSTM and GRU, a batch size of 10 and a sequence length of 1000 were used,
while the FFNN had a batch size of 10,000 (resulting in an equal number of
training samples for each model). Early stopping was implemented in case the
model diverged from its best result for more than 3 epochs in a row. 5-fold
cross-validation was used to gauge the distribution of the results. The results
are shown in Figure 4.4.

44 | Model Development

Figure 4.4: Performance of models of difference layer size with respect to
the validation loss using the MSE. The x-axis displays the size of the hidden
layers in the model using a logarithmic scale, while the loss is shown on the
y-axis (a lower loss indicates better performance). The dashed red horizontal
line represents the performance of the linear regression model, and each line
represents a model subject to changes in the size of the hidden layer. The
highlighted area behind each line shows the spread of the standard deviation
over the 5-fold cross-validation. The FFNN models are marked with numbers
indicating the total number of layers in the model. The clear trend observed
is that as the size of the models increases, the loss decreases, indicating better
performance.

While Figure 4.4 provides an indication of the number of units in the
hidden layer, it does not accurately show the increase in size in terms of the
total amount of memory used to store the model. To illustrate this, the total
size of the model in terms of the number of individual weights can be plotted
instead, as it gives a more realistic indication of the models’ overall size. This
is shown in Figure 4.5.

Model Development | 45

Figure 4.5: Performance of models of different number of weights with respect
to the validation loss. The vertical red line represents the approximate number
weights (single precision floating point numbers) that the model can use give
the constraints of the battery management unit as discussed in Section 2.3.2.
The horizontal line is the performance of the previously established linear
regression model.

Looking at Figure 4.5, the difference in size between the FFNN2 and
FFNN4 is clearly indicated as they both now span a different range on the
x-axis. Notably, the largest two-layer FFNN models are comparable in size to
a three-layer FFNN with a hidden layer size of 64.

At this point, a number of further design decisions were made. The first
one is to proceed with one FFNN model and one RNN model. This is because
ultimately only two models can be tested in the truck at the same time. The
models chosen were the LSTM with a hidden size of 16, as it was the best
performing RNN with the size closest to the vertical red line, and the FFNN
with three layers.

46 | Model Development

4.2.3 Hyper-parameters selection
Beyond the general structure of the models, there are a few parameters that can
be tuned, including sequence length for LSTM, learning rates, weight decay,
dropout, and the number of epochs of training.

When training the LSTM with different sequence lengths, the length had
no effect on the final performance of the model. Therefore, the original
sequence length of 1000 was used, as it represents about 17 minutes, which
was deemed a reasonable amount of time for battery cell behaviour to be
captured. Similarly, dropout was experimented with for the FFNN, but it only
had a negative effect on the performance.

Learning rates were dynamic throughout the training using the ADAM
optimiser, where the maximum learning rate was decreased when the model
loss did not decrease for consecutive epochs. The number of epochs was
increased while still using early stopping, this time with a patience of 5 epochs.

A random sweep over different amounts of weight decay (L2 regularisa-
tion) was conducted to find the best value for each model. The results are
visible in Figure 4.6.

Figure 4.6: Random sweep over the amount of weight decay for LSTM and
FFNN using the procedure described in Section 4.2.3.

In the random sweep over the different amounts of weight decay, the FFNN
seemed to benefit more from weight decay than the LSTM. The best weight
decay values were 0.0044 for the LSTM and 0.0312 for the FFNN.

Model Development | 47

4.3 Model implementation
The trained model must be implemented in embedded C to run on the battery
management unit. Because the model is pre-trained, only the forward pass of
the model must be implemented, simplifying the process.

4.3.1 Weights conversion
Implementing the selected model in C involves extracting the weights from
the model in PyTorch. The initial approach was to use the ONNX library
discussed in Section 2.3.3, however, this library did not provide the necessary
tailoring and customisation required by the battery management unit. As a
result, each model was implemented and tested by hand instead of through
code generation, posing a new challenge. First, the weights of each model need
to be converted to C code. The method to do this is showcased in Listing 4.2.

48 | Model Development

import torch

def as_c_array(python_list):
takes python list returns string of C array
input: [1.0,2.0,3.0]
output: ”{1.0f,2.0f,3.0f}”
element_str = ”f, ”.join(map(str, python_list))
return ”{” + element_str + ”f}”

def weights_to_c_code(weight_tensor, name):
Take a python array and return the correpsonding C code
input: [[1.0, 2.0], [3.0, 4.0]], ”fc.1”
output: ”””const float[2][2] fc_1 = {
{1.0f, 2.0f},
{3.0f, 4.0f}
}”””
np_array = weight_tensor.numpy()
array_type = ”const float ” + name.replace(”.”, ”_”)
array_dimension = ”[” + ”][”.join(np_array.shape) + ”]”
array_values = ” = ”
if np_array.ndim == 1:

array_values += as_c_array(np_array.tolist())
else:

element_str = [as_c_array(row) for row in np_array]
array_values += ”{\n”
array_values += ”,\n”.join(element_str)
array_values += ”}\n”

return array_type + array_dimension + array_values

path = ”/path/to/model”
model = torch.load(path)

for name, param in model.named_parameters():
print(weights_to_c_code(param.data, name))

Listing 4.2: Python code that takes a pytorch model-weights and returns a
string of the weights formatted as C code

With the code in Listing 4.2, the weights in the Python-based PyTorch
model can be converted to arrays of floats that can be used in C code. One
thing to note is that the weights are stored as double precision floats in Python,
and for the particular use case of the Scania trucks, they need to be represented
as 32-bit floats. In this conversion process, some precision is lost, which may
affect the performance of the model after being implemented in C. This will
be examined later in Section 5.2.1.

Model Development | 49

4.3.2 FFNN implementation
The nature of feedforward neural networks consists of simple matrix
multiplications, the implementation of which is straightforward enough not
to be covered in this report.

4.3.3 LSTM implementation
When designing the code implementation for the LSTM, the specific
embedded requirements of the target hardware need to be considered. These
include the amount of memory used as well as CPU utilisation, but also the
predictability of these factors. While the source code of the implementation
will remain a property of Scania, the schematic for the implementation is
shown in Figure 4.7.

Figure 4.7: Graphical illustration of LSTM C implementation. The cell and
hidden state represent the internal state of the LSTM, while V ectorA and
V ectorB are temporary vectors used to store intermediary values. The final
hidden state is the output of the entire model.

From Figure 4.7, the code implementation of the LSTM is visible.
All operations are either matrix multiplication with a vector, element-wise
multiplication of two vectors, or applying a function to each element in a
vector. The weights themselves are retrieved using the code in Listing 4.2.
The cell state and hidden state are initialised to 0, which is a limitation of the

50 | Model Development

current implementation. After the hidden state of the cell is produced, a linear
transformation is used to produce a single output value; this is not shown in
Figure 4.7.

Results and Analysis | 51

Chapter 5

Results and Analysis

This chapter is concerned with the results of the model simulation, hardware
testing, and live model testing, with a focus on comparing the performance
of long short-term memory (LSTM) and feedforward neural network (FFNN)
models used in this project. Section 5.1 discusses the results of the trained
models on the lab data. In the model simulation (Section 5.2), the C
implementation of the models is tested using Scania’s in-house simulation
software. The performance of the embedded LSTM and FFNN models
is compared with the Python-based models using a simulation on real
driving data, providing an initial evaluation of the models before hardware
implementation. The live model testing is done in (Section 5.3), the models
are tested in real-time on a Scania truck. The test performance of the LSTM
and FFNN models is evaluated during driving, charging, and idling scenarios.
Finally, In hardware testing (Section 5.3.3), the models are deployed on the
hardware to assess CPU utilisation and overall performance in a controlled
environment.

5.1 Lab data testing
After having selected the hyperparameters for the the LSTM and FFNN the
model was trained on the whole training dataset with the evaluation series used
for early stopping with the evaluation procedure described in Section 3.3.2.
The test series consisted of 240 616 samples. The results in terms of mean
squared error and mean absolute error are showcased in Table 5.1.

52 | Results and Analysis

Model Mean Squared Error Mean Absolute Error 95% Confidence Interval
FFNN 0.005171 4.522 4.493 to 4.551
LSTM 0.008063 4.355 4.312 to 4.396

Table 5.1: Comparison of mean squared error and mean absolute error for the
best FFNN and LSTM models on lab data. The unit of the mean absolute error
is millivolt. The 95% confidence interval was calculated on the mean absolute
error using the t-distribution.

In Table 5.1 the mean squared error of the FFNN is smaller than that
of the LSTM, while for the mean absolute error the opposite is true. This
discrepancy implies that while the LSTM model generally makes more
accurate predictions, it occasionally makes larger errors. The 95% confidence
intervals between the two mean absolute errors do not overlap, suggesting that
there is a statically significant difference between the results. Figure 5.1 is a
subset of the estimations of the two models on the testing data compared to
the measured voltage.

Figure 5.1: Subset of model estimation on the testing data.The temperature
during this test subset hovered around 30±5◦C. The cell was charged to 100%
SOC and discharged to 10% in bursts of approximately 50A, repeating this
cycle three times over about ten hours each. After the third cycle, the cell was
fully discharged to 0% SOC, leading to a voltage collapse visible around the
31-hour mark. Source: Scania

From Figure 5.1 the two models have clearly learned the cells’ general
dynamic behaviour. However both models seem to not catch the temperature

Results and Analysis | 53

variations peaks. The FFNN does a better job than the LSTM at modelling
the dips when the cell reaches a low SOC. Neither model accurately models
the voltage collapse at hour 31, but the FFNN does a slightly better job than
the LSTM. The voltage variations at the 0, 11, and 22-hour marks are due to
temperature changes, something neither model seems to have fully learned.

5.2 Model simulation
The implemented C module can be simulated using in-house software
available at Scania. This allows custom values to be provided in order to
compare its performance with the Python-based model. The simulation is
based on a version of the equivalent circuit model, and thus is limited in terms
of accuracy. However, it provides a good indication of how well the model
performs and acts as a sanity check before the model is run on the truck’s
hardware. The results of the simulation are shown in Figure 5.2.

54 | Results and Analysis

Figure 5.2: Simulation of the LSTM and FFNN with real driving data, with
corresponding features. About 80 minutes of real driving data is used as the
input to the Scania simulation software. The first two subplots of the figure
show the measured and estimated terminal voltage for the two models. Third
subplot of the figure shows the inputs given to the models. The SOC started
at 79% and decreased to 66% over the course of the drive. The temperature
remained steady at approximately 17◦C. The current drawn from the battery
is shown by the blue line, while the orange and green lines represent the
exponential decay for different values of alpha. Source: Scania

In the simulation, it is clear that both the LSTM and FFNN models have
captured the dynamics of the cell voltage. The orange line closely follows the
blue line. The mean absolute error (MAE) for the LSTM was 3.05mV, with

Results and Analysis | 55

95% of all errors being less than 8.51mV, while the FFNN had a slightly higher
MAE of 3.42mV and a 95% percentile error of 9.46mV. Note that Figure 5.2
shows the terminal voltage compared to Figure 5.1 which only shows the
dynamic voltage, this means that the orange lines is the sum of the models’
estimates and and open circuit voltage. Given these results, both models are
feasible candidates for hardware implementation moving forward.

5.2.1 PyTorch and C comparison
In order to ensure that the C implementation of the model performs on par
with the PyTorch implementation, the features created in Figure 5.2 were
given to the PyTorch implementation of the same models. The results of this
comparison are presented in Table 5.2.

Model LSTM FFNN
C 3.05 3.43
PyTorch 3.13 3.39

Table 5.2: Mean absolute error comparison of PyTorch and C implementations
of the LSTM and FFNN models when running inference on the same data. All
values are in millivolt.

From Table 5.2, it is apparent that the difference between the PyTorch and
C implementations is minuscule, both being on the order of tens of µV. This
difference is likely explained by the C implementation using 32-bit floating
point numbers, while the PyTorch model uses 64-bit floats. Moving forward,
it is assumed that the difference in performance between the Python and C
implementations of the models is negligible.

5.3 Live model testing
Once the models were verified to function on hardware, they were then flashed
onto a Scania truck to operate in a real-time setting. A similar setup to
Figure 3.4 was used, except for the power supply, which was not needed. The
test was carried out using the testing procedure outlined in Section 3.5.

56 | Results and Analysis

5.3.1 Test drive results
The tests were carried out on a battery electric vehicle Scania truck in sunny
weather with an ambient air temperature of 18◦C on Scania’s test track, with
no coupled trailer. The initial state of charge was 86.0%, which decreased to
83.0% over the course of the drive. The truck was later charged back up to
87.5%, which is the same SOC that the truck was idling at.

The test provided about 35 minutes of data: 21 minutes of driving, 11
minutes of charging, and 3 minutes of idling. The two models were run
simultaneously on two separate battery packs. Although the models were
running on all 180 cells in each pack, due to the limited bandwidth of the
controller area network bus, only the results of 5 cells were recorded for each
model in parallel. The results for each model are shown in Figure 5.3 and
Figure 5.4, respectively.

5.3.1.1 FFNN test results

The FFNN model was run on the target battery management unit, while the
LSTM was run on the controller battery management unit∗. The results for a
single battery cell can be seen in Figure 5.3.

∗Due to terminology concerns the terms master/slave are replaced by controller/target

Results and Analysis | 57

Figure 5.3: Test drive of FFNN and measured voltage for a single battery
cell for each driving test. The FFNN model (dashed green line) is compared
with the measured voltage (solid blue line). The first subplot shows the full
test drive, with the driving, charging, and idling sections are separated by the
vertical grey lines. Between the driving and charging section there is a period
of time which was discounted as the truck was in the process parking and the
charger was activated. The next subplot isolates the driving section, followed
by a combination of the charging and idling sections.

58 | Results and Analysis

During the driving test shown in Figure 5.3, the model follows the
measured voltage closely during periods of low variation in terminal voltage.
However, during large changes, the FFNN appears to be too sensitive to
large variations, overestimating the voltage in both directions. The relative
performance of the FFNN seems consistent throughout the entire driving test,
suggesting it does not drift away from the measured voltage. However, given
that the driving test is limited to only 20 minutes further testing is need in order
for a conclusion to be ascertained.

During the charging test, the FFNN model does a good job capturing
both the initial ramp-up of the charging rate and then following the linear
characteristics of the increasing voltage during charging. However, the model
does not find the exact slope of the increasing voltage, with the gradient being
a bit too shallow compared to the measured voltage.

In the idling test, the FFNN does not perform well. It seems not to have
learned the slower dynamic properties and instead locks down to the open
circuit voltage almost instantly. This could be due to this type of scenario not
being well represented in the training data or the features given to the model
not being complex enough to model this behaviour, because the FFNN has no
internal state. Ideally, the idling period should have been longer; however, due
to time constraints on the testing day, this was not possible.

Results and Analysis | 59

5.3.1.2 LSTM test results

Figure 5.4: Test drive of LSTM with measured voltage for a single battery cell
for each driving test. The layout of the figure is the same as in Figure 5.3, with
the exception that this time the green line represents the LSTM model.

As stated previously, this was run on a separate battery pack from the FFNN,
but because the drive happened simultaneously, the data will not be different

60 | Results and Analysis

enough to have a substantial impact on the conclusions that can be drawn.
Similar to the FFNN, the LSTM model follows the measured voltage closely
during periods of low variation in terminal voltage in the driving test. It also
tends to overestimate the spikes in voltage. However, unlike the FFNN, when
the current dips significantly, the LSTM is more careful and accurate in its
estimation. Just like the FFNN, the relative performance of the LSTM seems
to be consistent throughout the entire driving test.

During the charging test, the LSTM consistently overestimated the voltage.
While the gradient is accurate and seems to mimic the measured voltage, there
is an offset of approximately 17mV.

Similar to the FFNN, the LSTM does not seem to have captured the idling
relaxation behaviour of the cell. There is some visible smoothing over the first
few seconds of the test, likely a result of the internal state of the LSTM, but it
is not comparable to the expected behaviour.

5.3.2 Performance comparison
Comparing the results of the different models and cells makes a few
assumptions about the data. The first assumption is that the different cells
within a battery pack behave similarly, and the second is that the behaviour
between battery packs is similar. To measure performance, the mean absolute
error was taken between the model whose performance is to be measured and
the measured terminal voltage. This was first done for the entire test session
and then for each individual test to see in which parts the models perform well.
The results are visible in Figure 5.5.

Results and Analysis | 61

Figure 5.5: Violin plot of mean absolute error of each battery cell for different
models and test types. Each element in the figure includes a box plot of the
mean and interquartile range of the data, while the shape of the violin indicates
the spread of the data from the different cells. The different test types are
different parts of the test drive. The combined test is using the entire test drive
as a single dataset

From Figure 5.5, the ML models, the MAE across the combined tests
is 8.54mV for the LSTM and 6.69mV for the FFNN. It is clear that the
performance varies greatly across the different tests. The LSTM has the worst
overall performance in the combined test, likely due to the significant errors
from the charging test, despite being more accurate than the FFNN for both
the driving and idling tests. These results are further examined in Table 5.3.
The FFNN is the ML model with the best performance, particularly in the
modelling of the charging scenario. However, for the other tests, the FFNN is
the worst-performing model.

62 | Results and Analysis

Error type Test Model Cell 0 Cell 18 Cell 36 Cell 56 Cell 72 Average

MAE

Combined LSTM 8.52 8.34 8.01 9.41 8.41 8.54
FFNN 7.14 6.82 6.68 6.36 6.44 6.69

Driving LSTM 6.77 6.38 6.26 8.61 8.08 7.22
FFNN 9.45 9.22 8.99 8.51 8.10 8.85

Charging LSTM 13.58 13.74 12.87 12.96 10.63 12.75
FFNN 3.11 2.52 2.57 2.38 3.34 2.78

Idling LSTM 5.20 5.44 5.40 5.72 6.65 5.68
FFNN 9.94 9.57 9.33 9.98 10.23 9.81

95% Percentile
Error

Combined LSTM 17.74 17.98 16.88 21.43 20.33 18.87
FFNN 21.06 20.86 19.68 19.56 18.06 19.84

Driving LSTM 21.22 19.72 18.62 28.76 26.42 22.95
FFNN 27.63 27.64 26.80 27.46 24.44 26.79

Charging LSTM 17.25 17.70 16.69 16.31 13.98 16.38
FFNN 6.12 6.66 6.31 6.37 6.41 6.37

Idling LSTM 10.64 10.71 10.45 11.30 12.15 11.05
FFNN 17.45 16.60 16.64 17.13 18.13 17.19

Table 5.3: Absolute error and 95th percentile error for the FFNN and LSTM
for each test and individual cell over the driving, charging and idling period of
the test-drive. The entire test-drive is shows in the combined row. All values
are in millivolt.

Table 5.3 shows the errors and 95% percentile error of each individual
cell for each model in a table format. Note that the results may not be exactly
comparable because each model runs on different battery packs. The 95%
percentile error is the value that is greater than exactly 95% of all measured
error values. This metric is used because, in addition to having good average
performance, a model that is also consistent is preferable.

Inspecting the 95% percentile error, the LSTM seems to consistently
outperform the FFNN, with the exception of the charging test. Another notable
finding is that for the LSTM, cell number 36 consistently has the lowest error,
while cell 56 has the highest.

5.3.3 CPU utilisation comparison
The maximum CPU utilisation of the models were tested in accordance with
Section 3.4, the results are visible in Table 5.4.

Results and Analysis | 63

Model 10Hz CPU Utilisation 1Hz CPU Utilisation
Baseline 18.5% 6.6 %
FFNN 19.8% (+1.3%) 6.7% (+0.1%)
LSTM 24.0% (+5.5%) 6.9% (+0.3%)

Table 5.4: CPU utilisation of 1Hz and 10Hz loops for FFNN, LSTM, and
Baseline. The baseline is the utilisation of the CPU when the battery
management unit is running its existing modules. The FFNN and LSTM
are added in isolation in addition to the existing modules that are running on
the battery management unit. The utilisation was measured as the maximum
utilisation over a 5 minute period. A lower utilisation is better.

From Table 5.4, it is clear that the increase in CPU utilisation of the FFNN
is significantly smaller than that of the LSTM. This difference is due to the
added number of calculations needed for the LSTM, as well as the more
complex activation functions used (sigmoid and tanh instead of ReLU). While
a number such as 5.5% may not appear large by itself, it also means that all
future features must share this CPU utilisation. These figures suggest that there
is no possibility of running the LSTM on all 180 cells at a frequency higher
order of magnitude than 1Hz, as the tenfold utilisation of more than 50% for
a single module is not acceptable. Overall, the CPU utilisation of the FFNN
is preferable over the LSTM utilisation.

5.4 Major results
The results indicate that, both machine learning models demonstrated a good
ability to generalise to the battery behavioural characteristics. These models
are also portable and can be implemented on the battery management unit,
allowing them to run in a real-time setting within the limitations of the
embedded hardware. The LSTM performed better than the FFNN in both the
driving and idling scenarios, while the FFNN outperformed the LSTM in the
charging scenario.

64 | Results and Analysis

5.5 Discussion

5.5.1 Test drive discussion
Overall, the FFNN performed better than the LSTM across the entire test drive.
However, the proportions of each scenario type during the test could affect the
overall results depending on the time spent in each scenario. For example,
since the different tests varied in length, the combined results would differ if
the distribution of time for driving, charging, and idling changed. Therefore,
each scenario should be discussed in isolation. It is also important to note that
the models were evaluated based on a single test drive, and the specific data
from this drive could influence the conclusions drawn.

In the driving scenario, the LSTM model outperformed the FFNN,
indicating that the LSTM’s ability to maintain an internal state over time is
beneficial for capturing the dynamics of battery cell behaviour during driving.
Particularly during large positive or negative voltage spikes, the FFNN tended
to overestimate the voltage in either direction. These spikes usually coincide
with significant variations in cell current, suggesting that the FFNN might be
overly sensitive to this feature. The LSTM’s internal state likely helps prevent
such overshooting in voltage estimation.

In the charging scenario, the FFNN outperformed the LSTM, suggesting
that the simpler architecture of the FFNN is more suitable for modelling
the relatively steady and predictable voltage increase during charging. The
LSTM exhibited a systematic error with a constant offset, the cause of which
is unclear. The charging test was limited in the range of states of charge
tested. A longer and more comprehensive evaluation of charging scenarios
could provide a more complete picture of performance.

Both models struggled with the idling scenario, but the LSTM showed a
slight advantage. This advantage could be due to the internal state introducing
some inertia in the estimations, as evidenced by a slight curvature in Figure 5.4.
The FFNN’s tendency to react too sensitively to large changes in current is also
apparent in this scenario.

5.5.2 CPU utilisation discussion
When examining the CPU utilisation, the FFNN demonstrated significantly
lower usage compared to the LSTM in both the 10Hz and 1Hz loops. Both
models had minimal impact on the 1Hz loop, which is encouraging. However,
in the 10Hz loop, the FFNN exhibited much lower CPU utilisation. This

Results and Analysis | 65

indicates that the complexity of the LSTM arises not only from its size but
also from a more complex inference process.

Given the comparable performance in the driving test, this suggests that
the FFNN has more potential for improvement within the constraints of CPU
utilisation. Enhancements could include developing a more complex model
with additional layers or incorporating new features to better capture the
dynamic behaviour of the current. Although not examined in this thesis, these
results also suggest the potential for the models to make inferences at a higher
frequency, estimating cell voltages more frequently than once per second.

66 | Results and Analysis

Conclusions and Future work | 67

Chapter 6

Conclusions and Future work

This chapter introduces the conclusions that can be made from the results of
the thesis as a whole. This includes the conclusions as well as the limitation
with respect to the data and hardware. As well as the further extensions and
future work. Lastly the reflection on the social, economical and ethical impacts
of the thesis.

6.1 Conclusions
The major conclusions that can be drawn from this thesis are:

• A machine learning approach is a feasible method to model the battery
cell characteristics in a battery electric vehicle.

• Such a model can be implemented in embedded C and run on the battery
management unit without depleting its resources.

Beyond these major conclusions, some more specific observations can be
made. Both the FFNN and LSTM produced comparable results in terms of
mean absolute error performance during the test drive. The LSTM performed
better in driving and idling scenarios, while the FFNN excelled during
charging, as shown in Table 5.3. When adapting these models to run on
embedded systems, manually converting the weights and implementing the
model inference function was preferable to using code generation tools like
ONNX. This approach allowed for better tailoring to the existing systems on
the battery management unit and resulted in a smaller footprint compared
to a library import. Comparing the Python and C implementations revealed
no degradation in performance. However, among the two models explored,

68 | Conclusions and Future work

the LSTM had a higher maximum CPU utilisation than the FFNN when
running inference on the battery management unit, as shown in Table 5.4.
Consequently, further exploration into inference at a higher frequency should
not consider the LSTM.

6.2 Limitations
There have been limitations throughout this project that can either be addressed
with further research or need to be considered when making conclusions about
this work. They are explored in each of the following subsections.

6.2.1 Data limitations
The limitations of the project mostly revolve around the data used for training
the model. As with many machine learning projects, data often determines the
success of a project. In this case, the available data has been very valuable;
however, it also posed some limitations that needed to be considered.

6.2.1.1 Data temporal resolution

The update frequency of the data is 1Hz. This limits the resolution at which
the model can both return data and the quality of the input, meaning that the
model might not capture finer dynamics within the battery, which ultimately
limits the accuracy of the model.

6.2.1.2 Data accuracy and precision

Since the model uses current, temperature, and SOC as features, each of
these is limited in accuracy by the hardware used to measure them or the
existing models used to estimate the SOC. This means that if these models or
measurements are imprecise or inaccurate, it will ultimately affect the results
in this thesis.

6.2.1.3 Data generalisation

The data used for training is also created under different conditions than those
under which the model is expected to perform. Since the lab data is both
measured at a greater precision than in the Scania trucks, the battery cell
behaviour may be different. In addition, battery ageing is not considered in this
project, a factor which could impact the accuracy of the model when battery

Conclusions and Future work | 69

cells are older or at a different state of health. Additionally, the model is only
trained on lithium nickel manganese cobalt oxide commonly known as NMC
battery cells, so there are no guarantees that neither the model nor the method
of training said model are effective for different battery chemistries.

6.2.1.4 Model initialisation

The nature of the model is constructed with both a recurrent neural network
as well as the exponential decaying inputs. The initial time that the model is
running, the outputs are to some extent undefined as the initial conditions are
not accurately captured. As a result, the model needs some time to warm up
before it produces reliable results.

6.2.2 Hardware limitations
When referring to the hardware, this includes everything from the truck to
the individual battery management units used in this project. Because these
are heavily tailored to the needs of Scania, the findings of this paper are also
tailored to the needs of Scania.

6.2.2.1 Truck availability

The testing in a truck setting is very limited in scope. It is costly for Scania
to allot a time slot for a truck and to take time away from the engineers to
drive the truck. As a result, the test drive is limited in both range and time.
The truck was limited to the terrain of the test track as well as the temperature
on the day the test was carried out. Consequently, the model was not tested
under different temperature and driving conditions, which could provide a
more holistic picture of the model’s ability to generalise.

6.3 Future work
Since the thesis was limited both by data and by time, there are a few areas
that can be further explored within this thesis.

6.3.1 More extensive testing
The real test of the model was limited to a single test run on a real Scania
truck. Ideally, the model should be tested under a greater extent of varying

70 | Conclusions and Future work

conditions. This would include different ambient temperatures, driving
characteristics, states of charge, charging at different speeds, and idling.

6.3.2 Accounting for battery health
The model can be further fine-tuned to accommodate ageing batteries,
exploring to what extent the ageing of the battery affects the results of this
thesis and how it can be accounted for. This would require the acquisition of
more data with new features at a high enough resolution.

6.3.3 Alternative model targets
Alternatively, a model can be created to estimate other targets such as the SOC
or state of health of the battery cell. This adds the challenge that the SOC
and state of health cannot be directly measured, meaning that a model could
never outperform existing models of the battery cell SOC and state of health.
However, with accurately collected data, the model could perhaps perform
better over time compared to an open-loop model. The possibility of this
remains to be explored.

6.3.4 Model initialisation
Since recurrent neural networks, by nature, have an internal state, and the
inputs with exponential decay are also time-dependent. However, since the
histories cannot be known when the model is created, these values are currently
initialised to an array of zeroes. Exploring better ways to initialise these values
could improve model performance.

6.3.5 Alternative machine learning models
Another avenue worth exploring is alternative machine learning models that
could serve as feasible alternatives to the FFNN and LSTM. In particular,
given the restrictions of the battery management unit, an ensemble of simpler
networks could potentially outperform a single model. Another model that
can be explored is the physics-informed neural network, which has shown
promising results in modelling physical systems [50], particularly for state
of charge and state of health estimation [62]. Additionally, to maximise
performance in terms of CPU utilisation, exploring low bit-width integer
neural networks [63] might be more suited for the battery management unit.

Conclusions and Future work | 71

6.4 Ethical, societal, and sustainability con-
siderations

Beyond the results of the thesis, the greater implications of the research need to
be placed within the context of the ethical, social, and environmental impacts.

6.4.1 Ethical considerations
There are some ethical considerations about the safety implications of using
software in heavy machinery such as trucks. These considerations need to
be taken into account, and systems need to be in place to prevent errors from
causing dangerous situations for the driver and the people around them.

Materials in lithium-ion batteries such as lithium and cobalt are known
as conflict minerals. Together with Volkswagen Group, Scania is part of the
Cobalt for Development initiative [64]. The initiative aims to improve health
and safety conditions and enhance the management of cobalt mining in the
Democratic Republic of the Congo [65]. The battery cell supplier Northvolt
is part of the Fair Cobalt Alliance, a non-government organisation that aims
to contribute to local economic development and improve the livelihoods of
people in the Democratic Republic of the Congo [66].

6.4.2 UN sustainable development goals
This thesis relates to a number of United Nations Sustainable Development
Goals (SDG). In particular, those that relate to sustainable infrastructures and
responsible consumption. The following list is a breakdown for each SDG.

• SDG 7: Affordable and Clean Energy - This goal aims to ensure
access to affordable, reliable, sustainable, and modern energy for all
[67]. Enhancing the efficiency and reliability of battery systems in
electric vehicles aligns with this goal by promoting the use of clean
energy. Research into accurate battery modelling improves performance
and longevity of batteries, making electric vehicles more viable and
attractive, thereby reducing reliance on fossil fuels and thus contributing
to target 7.a [67].

• SDG 9: Industry, Innovation, and Infrastructure - This goal focuses
on building resilient infrastructure, promoting inclusive and sustainable
industrialisation, and fostering innovation [68]. Scania, in particular,

72 | Conclusions and Future work

is a large supplier of industrial machines such as trucks. This thesis
provides new insights into improvements in the electrification of these
machines to promote sustainable industrialisation, contributing to target
9.4 of retrofitting industries to make them sustainable.

• SDG 11: Sustainable Cities and Communities - This goal is to
make cities inclusive, safe, resilient and sustainable. By contributing
to the development of more efficient and reliable electric vehicles, this
research supports the creation of sustainable urban environments [69].
Electric vehicles are key components of sustainable urban transportation
systems as part of target 11.2, and helping to reduce air pollution and
improve urban air quality as part of target 11.6.

• SDG 12: Responsible Consumption and Production - This goal
emphasises sustainable consumption and production patterns [70].
Improved battery management through advanced modelling techniques
can ensure that batteries are used more efficiently, giving them a longer
lifespan in adherence to target 12.5. This reduces the need for frequent
battery replacements, minimising waste and the environmental impact
from the reliance on natural resources as per target 12.2.

References | 73

References

[1] M.-K. Tran, A. Mevawala, S. Panchal, K. Raahemifar, M. Fowler,
and R. Fraser, “Effect of integrating the hysteresis component to the
equivalent circuit model of Lithium-ion battery for dynamic and non-
dynamic applications,” Journal of Energy Storage, vol. 32, p. 101 785,
Dec. 2020, ISSN: 2352-152X. DOI: 10.1016/j.est.2020.10178
5.

[2] J. Zhao, H. Ling, J. Liu, J. Wang, A. F. Burke, and Y. Lian,
“Machine learning for predicting battery capacity for electric vehicles,”
eTransportation, vol. 15, p. 100 214, Jan. 2023, ISSN: 2590-1168. DOI:
10.1016/j.etran.2022.100214.

[3] S. K. Kauwe, T. D. Rhone, and T. D. Sparks, “Data-Driven Studies of
Li-Ion-Battery Materials,” en, Crystals, vol. 9, no. 1, p. 54, Jan. 2019,
ISSN: 2073-4352. DOI: 10.3390/cryst9010054.

[4] K. J. Siczek, “Chapter Eight - Negative Electrode (Anode) Materials,”
in Next-Generation Batteries with Sulfur Cathodes, K. J. Siczek, Ed.,
Academic Press, Jan. 2019, pp. 117–131, ISBN: 978-0-12-816392-4.
DOI: 10.1016/B978-0-12-816392-4.00008-6.

[5] X. Liu, C. Zheng, J. Wu, J. Meng, D.-I. Stroe, and J. Chen, “An
Improved State of Charge and State of Power Estimation Method Based
on Genetic Particle Filter for Lithium-ion Batteries,” en, Energies,
vol. 13, no. 2, p. 478, Jan. 2020, ISSN: 1996-1073. DOI: 10.3390/en
13020478.

[6] S. Wang et al., “Chapter 7 - Battery state-of-power evaluation methods,”
in Battery System Modeling, S. Wang et al., Eds., Elsevier, Jan. 2021,
pp. 227–254, ISBN: 978-0-323-90472-8. DOI: 10.1016/B978-0-3
23-90472-8.00004-4.

[7] 14:00-17:00, ISO 26262-1:2018, en. [Online]. Available: https://w
ww.iso.org/standard/68383.html (visited on 03/08/2024).

https://doi.org/10.1016/j.est.2020.101785
https://doi.org/10.1016/j.est.2020.101785
https://doi.org/10.1016/j.etran.2022.100214
https://doi.org/10.3390/cryst9010054
https://doi.org/10.1016/B978-0-12-816392-4.00008-6
https://doi.org/10.3390/en13020478
https://doi.org/10.3390/en13020478
https://doi.org/10.1016/B978-0-323-90472-8.00004-4
https://doi.org/10.1016/B978-0-323-90472-8.00004-4
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html

74 | References

[8] X. Li, D. Yu, V. Søren Byg, and S. Daniel Ioan, “The development
of machine learning-based remaining useful life prediction for lithium-
ion batteries,” Journal of Energy Chemistry, vol. 82, pp. 103–121, Jul.
2023, ISSN: 2095-4956. DOI: 10.1016/j.jechem.2023.03.02
6.

[9] X. Ding, D. Zhang, J. Cheng, B. Wang, and P. C. K. Luk, “An improved
Thevenin model of lithium-ion battery with high accuracy for electric
vehicles,” en, Applied Energy, vol. 254, p. 113 615, Nov. 2019, ISSN:
03062619. DOI: 10.1016/j.apenergy.2019.113615.

[10] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic
Charge and Discharge of the Lithium/Polymer/Insertion Cell,” en,
Journal of The Electrochemical Society, vol. 140, no. 6, p. 1526, Jun.
1993, ISSN: 1945-7111. DOI: 10.1149/1.2221597.

[11] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library, 2019. [Online]. Available: http://papers.ne
urips.cc/paper/9015-pytorch-an-imperative-sty
le-high-performance-deep-learning-library.pdf
(visited on 03/04/2024).

[12] Onnx/onnx, Mar. 2024. [Online]. Available: https://github.co
m/onnx/onnx (visited on 03/04/2024).

[13] M. S. Whittingham, “The Origins of the Lithium Battery,” en, Dec.
2019.

[14] M. El Haj Assad, A. Khosravi, M. Malekan, M. A. Rosen, and M. A.
Nazari, “Chapter 14 - Energy storage,” in Design and Performance
Optimization of Renewable Energy Systems, M. E. H. Assad and M. A.
Rosen, Eds., Academic Press, Jan. 2021, pp. 205–219, ISBN: 978-0-12-
821602-6. DOI: 10.1016/B978-0-12-821602-6.00016-X.

[15] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials:
Present and future,” Materials Today, vol. 18, no. 5, pp. 252–264, Jun.
2015, ISSN: 1369-7021. DOI: 10.1016/j.mattod.2014.10.04
0.

[16] B. Chapman, How does a lithium-Ion battery work? | Let’s Talk Science,
en, Sep. 2019. [Online]. Available: https://letstalkscience.
ca/educational-resources/stem-in-context/how-d
oes-a-lithium-ion-battery-work (visited on 02/26/2024).

https://doi.org/10.1016/j.jechem.2023.03.026
https://doi.org/10.1016/j.jechem.2023.03.026
https://doi.org/10.1016/j.apenergy.2019.113615
https://doi.org/10.1149/1.2221597
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.1016/B978-0-12-821602-6.00016-X
https://doi.org/10.1016/j.mattod.2014.10.040
https://doi.org/10.1016/j.mattod.2014.10.040
https://letstalkscience.ca/educational-resources/stem-in-context/how-does-a-lithium-ion-battery-work
https://letstalkscience.ca/educational-resources/stem-in-context/how-does-a-lithium-ion-battery-work
https://letstalkscience.ca/educational-resources/stem-in-context/how-does-a-lithium-ion-battery-work

References | 75

[17] M. Bates, MIT School of Engineering | » How does a battery work? en-
US, Hochreiter, May 2012. [Online]. Available: https://enginee
ring.mit.edu/engage/ask-an-engineer/how-does-a
-battery-work/ (visited on 02/29/2024).

[18] A. Broatch, P. Olmeda, X. Margot, and L. Agizza, “A generalized
methodology for lithium-ion cells characterization and lumped electro-
thermal modelling,” en, Applied Thermal Engineering, vol. 217,
p. 119 174, Nov. 2022, ISSN: 13594311. DOI: 10.1016/j.applt
hermaleng.2022.119174.

[19] R. R. Thakkar, “Electrical Equivalent Circuit Models of Lithium-
ion Battery,” en, in Management and Applications of Energy Storage
Devices, IntechOpen, Sep. 2021, ISBN: 978-1-83969-645-9. DOI: 10.5
772/intechopen.99851.

[20] M.-K. Tran et al., “A comprehensive equivalent circuit model for
lithium-ion batteries, incorporating the effects of state of health, state
of charge, and temperature on model parameters,” Journal of Energy
Storage, vol. 43, p. 103 252, Nov. 2021, ISSN: 2352-152X. DOI: 10.10
16/j.est.2021.103252.

[21] H. He, R. Xiong, and J. Fan, “Evaluation of Lithium-Ion Battery
Equivalent Circuit Models for State of Charge Estimation by an
Experimental Approach,” en, Energies, vol. 4, no. 4, pp. 582–598, Apr.
2011, ISSN: 1996-1073. DOI: 10.3390/en4040582.

[22] Y. Hu and S. Yurkovich, “Battery cell state-of-charge estimation using
linear parameter varying system techniques,” Journal of Power Sources,
vol. 198, pp. 338–350, Jan. 2012, ISSN: 0378-7753. DOI: 10.1016/j
.jpowsour.2011.09.058.

[23] Rimsha et al., “State of charge estimation and error analysis of lithium-
ion batteries for electric vehicles using Kalman filter and deep neural
network,” Journal of Energy Storage, vol. 72, p. 108 039, Nov. 2023,
ISSN: 2352-152X. DOI: 10.1016/j.est.2023.108039.

[24] M. Danko, J. Adamec, M. Taraba, and P. Drgona, “Overview of
batteries State of Charge estimation methods,” Transportation Research
Procedia, TRANSCOM 2019 13th International Scientific Conference
on Sustainable, Modern and Safe Transport, vol. 40, pp. 186–192, Jan.
2019, ISSN: 2352-1465. DOI: 10.1016/j.trpro.2019.07.029.

https://engineering.mit.edu/engage/ask-an-engineer/how-does-a-battery-work/
https://engineering.mit.edu/engage/ask-an-engineer/how-does-a-battery-work/
https://engineering.mit.edu/engage/ask-an-engineer/how-does-a-battery-work/
https://doi.org/10.1016/j.applthermaleng.2022.119174
https://doi.org/10.1016/j.applthermaleng.2022.119174
https://doi.org/10.5772/intechopen.99851
https://doi.org/10.5772/intechopen.99851
https://doi.org/10.1016/j.est.2021.103252
https://doi.org/10.1016/j.est.2021.103252
https://doi.org/10.3390/en4040582
https://doi.org/10.1016/j.jpowsour.2011.09.058
https://doi.org/10.1016/j.jpowsour.2011.09.058
https://doi.org/10.1016/j.est.2023.108039
https://doi.org/10.1016/j.trpro.2019.07.029

76 | References

[25] A. G. Stefanopoulou and Y. Kim, “10 - System-level management of
rechargeable lithium-ion batteries,” in Rechargeable Lithium Batteries,
ser. Woodhead Publishing Series in Energy, A. A. Franco, Ed.,
Woodhead Publishing, Jan. 2015, pp. 281–302, ISBN: 978-1-78242-
090-3. DOI: 10.1016/B978-1-78242-090-3.00010-9.

[26] D. Wang, Y. Yang, and T. Gu, “A hierarchical adaptive extended
Kalman filter algorithm for lithium-ion battery state of charge
estimation,” Journal of Energy Storage, vol. 62, p. 106 831, Jun. 2023,
ISSN: 2352-152X. DOI: 10.1016/j.est.2023.106831.

[27] F. N. Dişçi, Y. El-Kahlout, and A. Balıkçı, “Li-ion battery modeling
and SOC estimation using extended Kalman filter,” in 2017 10th
International Conference on Electrical and Electronics Engineering
(ELECO), Nov. 2017, pp. 166–169.

[28] C. Li, N. Cui, C. Wang, and C. Zhang, “Simplified electrochemical
lithium-ion battery model with variable solid-phase diffusion and
parameter identification over wide temperature range,” Journal of
Power Sources, vol. 497, p. 229 900, Jun. 2021, ISSN: 0378-7753. DOI:
10.1016/j.jpowsour.2021.229900.

[29] B. Ng, P. T. Coman, W. E. Mustain, and R. E. White, “Non-destructive
parameter extraction for a reduced order lumped electrochemical-
thermal model for simulating Li-ion full-cells,” Journal of Power
Sources, vol. 445, p. 227 296, Jan. 2020, ISSN: 0378-7753. DOI: 10.10
16/j.jpowsour.2019.227296.

[30] T. M. Mitchell, Machine learning (McGraw-Hill series in Computer
Science), en, Nachdr. New York: McGraw-Hill, 2013, ISBN: 978-0-07-
115467-3.

[31] K. A. Severson et al., “Data-driven prediction of battery cycle life before
capacity degradation,” en, Nature Energy, vol. 4, no. 5, pp. 383–391,
May 2019, ISSN: 2058-7546. DOI: 10.1038/s41560-019-0356-
8.

[32] A. Geslin et al., “Selecting the appropriate features in battery lifetime
predictions,” Joule, vol. 7, no. 9, pp. 1956–1965, Sep. 2023, ISSN: 2542-
4351. DOI: 10.1016/j.joule.2023.07.021.

[33] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
computation, vol. 9, pp. 1735–80, Dec. 1997. DOI: 10.1162/neco
.1997.9.8.1735.

https://doi.org/10.1016/B978-1-78242-090-3.00010-9
https://doi.org/10.1016/j.est.2023.106831
https://doi.org/10.1016/j.jpowsour.2021.229900
https://doi.org/10.1016/j.jpowsour.2019.227296
https://doi.org/10.1016/j.jpowsour.2019.227296
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.1016/j.joule.2023.07.021
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

References | 77

[34] R. C. Staudemeyer and E. R. Morris, Understanding LSTM – a tutorial
into Long Short-Term Memory Recurrent Neural Networks, Sep. 2019.
[Online]. Available: http://arxiv.org/abs/1909.09586
(visited on 02/21/2024).

[35] Z. Kong, Y. Cui, Z. Xia, and H. Lv, “Convolution and Long Short-
Term Memory Hybrid Deep Neural Networks for Remaining Useful
Life Prognostics,” Applied Sciences, vol. 9, p. 4156, Oct. 2019. DOI:
10.3390/app9194156.

[36] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On
the Properties of Neural Machine Translation: Encoder-Decoder
Approaches, Oct. 2014. [Online]. Available: http://arxiv.or
g/abs/1409.1259 (visited on 03/13/2024).

[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling, Dec. 2014.
[Online]. Available: http : / / arxiv . org / abs / 1412 . 3555
(visited on 03/13/2024).

[38] Y. Chen, L. Li, W. Li, Q. Guo, Z. Du, and Z. Xu, “Chapter 3 - Deep
learning,” in AI Computing Systems, Y. Chen, L. Li, W. Li, Q. Guo, Z.
Du, and Z. Xu, Eds., Morgan Kaufmann, Jan. 2024, pp. 53–121, ISBN:
978-0-323-95399-3. DOI: 10.1016/B978-0-32-395399-3.00
009-3.

[39] S. Heath, “What is an embedded system?” en, in Embedded Systems
Design, Elsevier, 2002, pp. 1–14, ISBN: 978-0-7506-5546-0. DOI: 10
.1016/B978-075065546-0/50002-5.

[40] R. Zalman, “Chapter 8 - Rugged autonomous vehicles,” in Rugged
Embedded Systems, A. Vega, P. Bose, and A. Buyuktosunoglu, Eds.,
Boston: Morgan Kaufmann, Jan. 2017, pp. 237–266, ISBN: 978-0-12-
802459-1. DOI: 10.1016/B978-0-12-802459-1.00008-7.

[41] S. Heath, Embedded systems design, eng, 2nd ed. Oxford Boston:
Newnes, 2003, ISBN: 978-0-7506-5546-0.

[42] J. Henriksson, M. Borg, and C. Englund, “Automotive safety and
machine learning: Initial results from a study on how to adapt the
ISO 26262 safety standard,” en, in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), vol. May 2018, 2018, pp. 47–49. DOI: 10.1145/3194
085.3194090.

http://arxiv.org/abs/1909.09586
https://doi.org/10.3390/app9194156
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555
https://doi.org/10.1016/B978-0-32-395399-3.00009-3
https://doi.org/10.1016/B978-0-32-395399-3.00009-3
https://doi.org/10.1016/B978-075065546-0/50002-5
https://doi.org/10.1016/B978-075065546-0/50002-5
https://doi.org/10.1016/B978-0-12-802459-1.00008-7
https://doi.org/10.1145/3194085.3194090
https://doi.org/10.1145/3194085.3194090

78 | References

[43] R. Salay, R. Queiroz, and K. Czarnecki, An Analysis of ISO 26262:
Using Machine Learning Safely in Automotive Software, Sep. 2017.
DOI: 10.48550/arXiv.1709.02435. [Online]. Available: ht
tp://arxiv.org/abs/1709.02435 (visited on 03/08/2024).

[44] Product Selector. [Online]. Available: https://www.nxp.com/p
roducts/product-selector:PRODUCT-SELECTOR (visited
on 03/08/2024).

[45] K. Barrera Llanga, A. Sapena-Bañó, J. Martinez-Roman, and R.
Puche-Panadero, “Implementing Deep Learning Models in Embedded
Systems for Diagnosis Induction Machine,” International Journal of
Electrical and Computer Engineering Research, vol. 3, pp. 7–12, Mar.
2023. DOI: 10.53375/ijecer.2023.319.

[46] S. Shah, Microsoft and Facebook’s open AI ecosystem gains more
support, en-US, Oct. 2017. [Online]. Available: https://www.e
ngadget.com/2017-10-11-microsoft-facebooks-ai-
onxx-partners.html (visited on 03/04/2024).

[47] C, en-US. [Online]. Available: https://onnxruntime.ai/doc
s/get-started/with-c.html (visited on 03/08/2024).

[48] Kraiskil/onnx2c: Open Neural Network Exchange to C compiler.
[Online]. Available: https://github.com/kraiskil/onn
x2c (visited on 03/08/2024).

[49] Y. Choi, S. Ryu, K. Park, and H. Kim, “Machine Learning-Based
Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel
Charging Profiles,” IEEE Access, vol. 7, pp. 75 143–75 152, 2019, ISSN:
2169-3536. DOI: 10.1109/ACCESS.2019.2920932.

[50] Y. Zheng and Z. Wu, “Physics-Informed Online Machine Learning and
Predictive Control of Nonlinear Processes with Parameter Uncertainty,”
Industrial & Engineering Chemistry Research, vol. 62, no. 6, pp. 2804–
2818, Feb. 2023, ISSN: 0888-5885. DOI: 10.1021/acs.iecr.2c0
3691.

[51] V. Safavi, N. Bazmohammadi, J. C. Vasquez, and J. M. Guerrero,
“Battery State-of-Health Estimation: A Step towards Battery Digital
Twins,” en, Electronics, vol. 13, no. 3, p. 587, Jan. 2024, ISSN: 2079-
9292. DOI: 10.3390/electronics13030587.

https://doi.org/10.48550/arXiv.1709.02435
http://arxiv.org/abs/1709.02435
http://arxiv.org/abs/1709.02435
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR
https://doi.org/10.53375/ijecer.2023.319
https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-onxx-partners.html
https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-onxx-partners.html
https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-onxx-partners.html
https://onnxruntime.ai/docs/get-started/with-c.html
https://onnxruntime.ai/docs/get-started/with-c.html
https://github.com/kraiskil/onnx2c
https://github.com/kraiskil/onnx2c
https://doi.org/10.1109/ACCESS.2019.2920932
https://doi.org/10.1021/acs.iecr.2c03691
https://doi.org/10.1021/acs.iecr.2c03691
https://doi.org/10.3390/electronics13030587

References | 79

[52] M.-K. Tran et al., “Python-based scikit-learn machine learning models
for thermal and electrical performance prediction of high-capacity
lithium-ion battery,” en, International Journal of Energy Research,
vol. 46, no. 2, pp. 786–794, 2022, ISSN: 1099-114X. DOI: 10.1002
/er.7202.

[53] X. Sui, S. He, A. Gismero, R. Teodorescu, and D.-I. Stroe, “Robust
Fuzzy Entropy-Based SOH Estimation for Different Lithium-Ion
Battery Chemistries,” in 2022 IEEE Energy Conversion Congress and
Exposition (ECCE), Oct. 2022, pp. 1–8. DOI: 10.1109/ECCE50734
.2022.9947792.

[54] P. Venugopal et al., “Analysis of Optimal Machine Learning Approach
for Battery Life Estimation of Li-Ion Cell,” IEEE Access, vol. 9,
pp. 159 616–159 626, 2021, ISSN: 2169-3536. DOI: 10 . 1109 / ACC
ESS.2021.3130994.

[55] L. Zhang, K. Li, D. Du, Y. Guo, M. Fei, and Z. Yang, “A Sparse
Learning Machine for Real-Time SOC Estimation of Li-ion Batteries,”
IEEE Access, vol. 8, pp. 156 165–156 176, 2020, ISSN: 2169-3536. DOI:
10.1109/ACCESS.2020.3017774.

[56] S. S. S. Narayanan and S. Thangavel, “Terminal voltage prediction of Li-
Ion batteries using Combined Neural Network and Teaching Learning
Based Optimization algorithm,” Applied Soft Computing, vol. 133,
p. 109 954, Jan. 2023, ISSN: 1568-4946. DOI: 10 . 1016 / j . asoc
.2022.109954.

[57] M. A. Hannan et al., “Toward Enhanced State of Charge Estimation
of Lithium-ion Batteries Using Optimized Machine Learning Tech-
niques,” en, Scientific Reports, vol. 10, no. 1, p. 4687, Mar. 2020, ISSN:
2045-2322. DOI: 10.1038/s41598-020-61464-7.

[58] A. Q. Tameemi, J. Kanesan, and A. S. M. Khairuddin, “Model-based
impending lithium battery terminal voltage collapse detection via data-
driven and machine learning approaches,” Journal of Energy Storage,
vol. 86, p. 111 279, May 2024, ISSN: 2352-152X. DOI: 10.1016/j.e
st.2024.111279.

[59] Pandas.DataFrame.ewm — pandas 2.2.1 documentation. [Online].
Available: https://pandas.pydata.org/pandas-docs/s
table/reference/api/pandas.DataFrame.ewm.html
(visited on 03/28/2024).

https://doi.org/10.1002/er.7202
https://doi.org/10.1002/er.7202
https://doi.org/10.1109/ECCE50734.2022.9947792
https://doi.org/10.1109/ECCE50734.2022.9947792
https://doi.org/10.1109/ACCESS.2021.3130994
https://doi.org/10.1109/ACCESS.2021.3130994
https://doi.org/10.1109/ACCESS.2020.3017774
https://doi.org/10.1016/j.asoc.2022.109954
https://doi.org/10.1016/j.asoc.2022.109954
https://doi.org/10.1038/s41598-020-61464-7
https://doi.org/10.1016/j.est.2024.111279
https://doi.org/10.1016/j.est.2024.111279
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html

80 | References

[60] INCA Software Products, en. [Online]. Available: https://www.e
tas.com/en/products/inca_software_products.php
(visited on 05/03/2024).

[61] J. Daoud, “Multicollinearity and Regression Analysis,” Journal of
Physics: Conference Series, vol. 949, p. 012 009, Dec. 2017. DOI: 10
.1088/1742-6596/949/1/012009.

[62] S. Singh, Y. E. Ebongue, S. Rezaei, and K. P. Birke, “Hybrid Modeling
of Lithium-Ion Battery: Physics-Informed Neural Network for Battery
State Estimation,” en, Batteries, vol. 9, no. 6, p. 301, Jun. 2023, ISSN:
2313-0105. DOI: 10.3390/batteries9060301.

[63] M. Wang, S. Rasoulinezhad, P. H. W. Leong, and H. K. H. So, “NITI:
Training Integer Neural Networks Using Integer-only Arithmetic,” en,
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11,
pp. 3249–3261, Nov. 2022, ISSN: 1045-9219, 1558-2183, 2161-9883.
DOI: 10.1109/TPDS.2022.3149787.

[64] Responsible Raw materials management, en-SE. [Online]. Available:
https://www.scania.com/group/en/home/sustain
able- transport/sustainability- at- scania/respo
nsible- business/sustainable- supply- chain/resp
onsible- raw- materials- management .html (visited on
03/07/2024).

[65] C. f. Development, Cobalt for Development (C4D) - Towards respon-
sible artisanal cobalt mining in the DR Congo, English. [Online].
Available: https : / / cobalt4development . com (visited on
03/07/2024).

[66] Northvolt deepens engagement in the DRC, en, Jan. 2024. [Online].
Available: https://northvolt.com/articles/northvo
lt-joins-fca/ (visited on 03/07/2024).

[67] Goal 7 | Department of Economic and Social Affairs. [Online].
Available: https://sdgs.un.org/goals/goal7#targe
ts_and_indicators (visited on 06/26/2024).

[68] Goal 9 | Department of Economic and Social Affairs. [Online].
Available: https://sdgs.un.org/goals/goal9#targe
ts_and_indicators (visited on 06/26/2024).

[69] Goal 11 | Department of Economic and Social Affairs. [Online].
Available: https://sdgs.un.org/goals/goal11#targ
ets_and_indicators (visited on 06/26/2024).

https://www.etas.com/en/products/inca_software_products.php
https://www.etas.com/en/products/inca_software_products.php
https://doi.org/10.1088/1742-6596/949/1/012009
https://doi.org/10.1088/1742-6596/949/1/012009
https://doi.org/10.3390/batteries9060301
https://doi.org/10.1109/TPDS.2022.3149787
https://www.scania.com/group/en/home/sustainable-transport/sustainability-at-scania/responsible-business/sustainable-supply-chain/responsible-raw-materials-management.html
https://www.scania.com/group/en/home/sustainable-transport/sustainability-at-scania/responsible-business/sustainable-supply-chain/responsible-raw-materials-management.html
https://www.scania.com/group/en/home/sustainable-transport/sustainability-at-scania/responsible-business/sustainable-supply-chain/responsible-raw-materials-management.html
https://www.scania.com/group/en/home/sustainable-transport/sustainability-at-scania/responsible-business/sustainable-supply-chain/responsible-raw-materials-management.html
https://cobalt4development.com
https://northvolt.com/articles/northvolt-joins-fca/
https://northvolt.com/articles/northvolt-joins-fca/
https://sdgs.un.org/goals/goal7#targets_and_indicators
https://sdgs.un.org/goals/goal7#targets_and_indicators
https://sdgs.un.org/goals/goal9#targets_and_indicators
https://sdgs.un.org/goals/goal9#targets_and_indicators
https://sdgs.un.org/goals/goal11#targets_and_indicators
https://sdgs.un.org/goals/goal11#targets_and_indicators

References | 81

[70] Goal 12 | Department of Economic and Social Affairs. [Online].
Available: https://sdgs.un.org/goals/goal12#targ
ets_and_indicators (visited on 06/26/2024).

[71] B. K. Lavine and T. R. Blank, “3.18 - Feed-Forward Neural Networks,”
in Comprehensive Chemometrics, S. D. Brown, R. Tauler, and B.
Walczak, Eds., Oxford: Elsevier, Jan. 2009, pp. 571–586, ISBN: 978-
0-444-52701-1. DOI: 10.1016/B978-044452701-1.00026-0.

[72] F. Marini, “3.14 - Neural Networks,” in Comprehensive Chemometrics,
S. D. Brown, R. Tauler, and B. Walczak, Eds., Oxford: Elsevier, Jan.
2009, pp. 477–505, ISBN: 978-0-444-52701-1. DOI: 10.1016/B978
-044452701-1.00128-9.

[73] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” en, Mathematics of Control, Signals, and Systems, vol. 2,
no. 4, pp. 303–314, Dec. 1989, ISSN: 0932-4194, 1435-568X. DOI: 10
.1007/BF02551274.

[74] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations by Error Propagation,” in Readings in Cognitive
Science, A. Collins and E. E. Smith, Eds., Morgan Kaufmann, Jan.
1988, pp. 399–421, ISBN: 978-1-4832-1446-7. DOI: 10.1016/B97
8-1-4832-1446-7.50035-2.

[75] C.-F. Wang, The Vanishing Gradient Problem, en, Jan. 2019. [Online].
Available: https : / / towardsdatascience . com / the - va
nishing - gradient - problem - 69bf08b15484 (visited on
02/28/2024).

https://sdgs.un.org/goals/goal12#targets_and_indicators
https://sdgs.un.org/goals/goal12#targets_and_indicators
https://doi.org/10.1016/B978-044452701-1.00026-0
https://doi.org/10.1016/B978-044452701-1.00128-9
https://doi.org/10.1016/B978-044452701-1.00128-9
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/B978-1-4832-1446-7.50035-2
https://doi.org/10.1016/B978-1-4832-1446-7.50035-2
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

82 | References

Appendix A: Machine learning | 83

Appendix A

Machine learning

A.1 Perceptron
The most basic neural network starts with a single unit called a perceptron.
The perceptron has a number of inputs, computes the weighted sum of these
inputs, applies a transfer function, and then outputs the result. The weights
ensure that the most salient inputs have a greater contribution to the result.
The process of altering the weights to match the desired output more closely
is known as weight training [71].

Figure A.1: Perceptron with inputs, weights, transfer function and output.

f(
n∑

i=0

wixi) = f(ŵT x̂) (A.1)

In Equation A.1, f represents the transfer function, x̂ is the vector of input
values, and xi is the ith value in x̂. Likewise, ŵ is the vector of weights, and

84 | Appendix A: Machine learning

wi is the ith weight. The sum of the pairwise multiplication of x̂ and ŵ is
given to the transfer function, which returns the output of the entire node.
Some common transfer functions are sigmoid, hyperbolic tangent, linear, and
decreasing exponential [72]. There is usually a concept of bias, which is a
value derived from the weight that is subtracted from the value before it is
entered into the transfer function, but that is omitted for now [72].

The perceptron is limited to the classification of linearly separable datasets.
To allow for a model to perform more complex classification and regression,
inserting a hidden layer of perceptrons between the input and output creates
what is called a feedforward neural network (FFNN) [71]. In 1989, it was
proven that a network of perceptrons with a single hidden layer is capable of
modelling an arbitrary continuous decision boundary [73].

A.2 Feedforward neural network
In a feedforward neural network, the task is to optimise the weights between
each layer to achieve the lowest loss when measuring the performance of the
model. The output of the first layer serves as the input of the next until the
final output layer is reached [72]. A feedforward network can have multiple
hidden layers.

A.2.1 Back propagation
Backpropagation is an algorithm to train FFNN first introduced by Rumelhart
et al. in 1988 [74]. This approach aims to minimise the value of a loss function
when the model’s output is compared to the measured voltage. Taking the
derivative of the loss function with respect to the model’s weights gives the
direction of decreasing loss. The weights of all the layers are then nudged
in a direction following the gradient of the loss function, a process known as
gradient descent [71]. If the derivative of the loss function can be expressed
in terms of the loss function itself, it makes computations more efficient.

In general, with the increase of layers and distance between the first layer
and the output, the concept of vanishing gradient comes into play, where the
further away a node is from the output, the less impact it has on the input, and
thus the gradient at that point is much smaller [75].

Appendix A: Machine learning | 85

A.3 Recurrent neural network
FFNNs are limited to data being transferred in one direction, akin to a directed
acyclic graph. When originally posed by David Rumelhart in 1986, he coined
the term recurrent neural network (RNN). An RNN contains connections that
can propagate data from earlier events and times to the current processing step.
As a result, RNNs have the concept of memory. This allows the network to
more easily adapt to time series data since the model itself contains an internal
state [34].

86 | Appendix B: Detailed feature selection

Appendix B

Detailed feature selection

The feature selection process involved many iteration of training different
models in order to determine which features gave the most performance.

From Figure B.1, it is evident that many values have significant correlation,
with their coefficient being close to 100. Expectedly, the moving averages of a
feature are correlated with each other. Another correlation is between the dsoc
and the current i, which is explained by the fact that the SOC is the integral
of current with respect to time, and thus the derivative of the SOC should be
the current. As a result all features that are derivatives of SOC are not useful.
Notably, there seems to be much smaller correlation between temperatures
with exponential decay with different values of α compared to other features
where the same feature with different values of α have a lot of correlation with
each other. Given these results, all features with a correlation greater than 0.85
were removed.

Appendix B: Detailed feature selection | 87

Figure B.1: Heatmap of coefficient of correlation between all features. All
coefficients are multiplied by 100 and lies in the range 100-0 instead of 1-0.

88 | Appendix B: Detailed feature selection

Figure B.2: Violin-plot of features with their corresponding improvement with
base features i, t, soc and iα=0.0001

After iα=0.0001 was added as a feature, each subsequent feature that was
added provided a more significant improvement in performance compared to
the previous run. The most significant improvements were seen with iα=0.001

and ∂iα=0.0001, both resulting in a 24% improvement. I chose iα=0.001 as a
feature since the spread of the results, as visible in Figure B.2, was smaller
than for ∂iα=0.0001. iα=0.001 will provide the model with more information
about the medium-term changes in current, compared to iα=0.0001. The results
after adding iα=0.001 as a base feature are shown in Figure B.3.

Appendix B: Detailed feature selection | 89

Figure B.3: Violin-plot of features with their corresponding improvement with
base features i, t, soc, iα=0.0001 and iα=0.001

As shown in Figure B.3, the relative improvements with each added feature
have begun to decline, with the maximum improvement being only 13%.
Adding di will provide the model with information about immediate changes
in current draw.

90 | Appendix B: Detailed feature selection

Figure B.4: Heat-map of features with their corresponding improvement with
base features i, t, soc, iα=0.0001, iα=0.001 and di

After adding di as a feature as shown in Figure B.4, it is visible in the
violin plot that the distribution of improvements has an interquartile range
that includes zero, suggesting that these improvements lack the statistical
significance to be relevant. Thus, we conclude the search for new features.
The summary of improvements for each added feature is visible in Figure 4.3.

Appendix C: Model source code | 91

Appendix C

Model source code

import torch.nn as nn
class FFNN3(nn.Module):

def __init__(self, input_size, hidden_size, output_size):
super(FFNN3, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)

def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x

class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):

super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden=None):
if hidden is None:

h0 = torch.zeros(1, x.size(0), self.hidden_size)
c0 = torch.zeros(1, x.size(0), self.hidden_size)
hidden = (h0, c0)

lstm_out, hidden = self.lstm(x, hidden)
out = self.linear(lstm_out)
return out, hidden

Listing C.1: Python code of the three layer FFNN and LSTM pytorch classes

92 | Appendix C: Model source code

TRITA – EECS-EX2024:0000
Stockholm, Sweden 2024

www.kth.se

€€€€ For DIVA €€€€
{
”Author1”: { ”Last name”: ”Nyberg”,
”First name”: ”Isak”,
”Local User Id”: ”u1zl4y8k”,
”E-mail”: ”isaknyb@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
}
},
”Cycle”: ”2”,
”Course code”: ”DA231X”,
”Credits”: ”30.0”,
”Degree1”: {”Educational program”: ”Degree Programme in Information and Communication Technology”
,”programcode”: ”CINTE”
,”Degree”: ”Degree of Master of Science in Engineering”
,”subjectArea”: ”Computer Science and Engineering”
},
”Title”: {
”Main title”: ”Optimising Battery Cell Dynamics in Electric Vehicles with Embedded Machine Learning”,
”Subtitle”: ”Implementing Real-Time Voltage Modelling in Electric Vehicle Subsystems”,
”Language”: ”eng” },
”Alternative title”: {
”Main title”: ”Optimering av battericelldynamik i elfordon med inbyggd maskininlärning”,
”Subtitle”: ”Implementering av realtidsmodellering av batterispänning i eldrivna fordon”,
”Language”: ”swe”
},
”Supervisor2”: { ”Last name”: ”Bökelund”,
”First name”: ”Björn”,
”E-mail”: ”bjorn.bokelund@scania.com”,
”Other organisation”: ”Scania CV AB”
},
”Supervisor3”: { ”Last name”: ”Lundström”,
”First name”: ”Johan”,
”E-mail”: ”johan.x.lundstrom@scania.com”,
”Other organisation”: ”Scania CV AB”
},
”Examiner1”: { ”Last name”: ”Nordahl”,
”First name”: ”Mats”,
”Local User Id”: ”u1d13i??”,
”E-mail”: ”mnordahl@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Computer Science” }
},
”Cooperation”: { ”Partner_name”: ”Scania CV AB”},
"National Subject Categories": "10201, 10206",
”Other information”: {”Year”: ”2024”, ”Number of pages”: ”xxiii,91”},
”Copyrightleft”: ”copyright”,
”Series”: { ”Title of series”: ”TRITA – EECS-EX” , ”No. in series”: ”2024:0000” },
”Opponents”: { ”Name”: ”Hugo Dettner Källander”},
”Presentation”: { ”Date”: ”2024-06-25 11:00”
,”Language”:”eng”
,”Room”: ”via Zoom https://kth-se.zoom.us/j/6454199194”
,”Address”: ”Isafjordsgatan 22 (Kistagången 16)”
,”City”: ”Stockholm” },
”Number of lang instances”: "3",
”Abstract[eng]”: €€€€

This thesis explores the application of machine learning for modelling battery cell dynamics in
battery electric vehicles. The primary objective is to develop and implement machine learning based
models, which accurately estimate the terminal voltage of lithium-ion battery cells and are able to
run inference in real-time on embedded systems present in battery electric vehicles. Conventional
methods, such as the equivalent circuit model, have limitations in handling the complex and dynamic
environments encountered in battery electric vehicles. This thesis aims to improve upon these methods
by leveraging the capabilities of machine learning in an embedded setting.

The research was conducted in collaboration with Scania CV AB, utilising data from their battery labs
and electric trucks. The study involved preprocessing and feature engineering on the data, followed
by training various machine learning models, including feedforward neural networks and long
short-term memory networks. These models underwent training and evaluation based on their efficacy in
interpreting data derived from battery tests conducted in a laboratory setting. The trained machine
learning models were then adapted to run on the embedded systems within electric trucks, while
considering the limited computational power and memory resources.

Both models were evaluated in a real-world electric truck during driving, charging, and idling
scenarios. The long short-term memory network exhibited better performance when driving and idling
while, the feedforward neural network performed better during the charging scenario. These findings
are valuable as they demonstrate that machine learning models are the feasible for real-time
applications in battery electric vehicles. It also highlights a promising area of further research,

particularly for battery chemistries that are not easily modelled by the equivalent circuit model,
paving the way for more intelligent, safe, and efficient battery management solutions in electric
vehicles.

€€€€,
”Keywords[eng]”: €€€€
Battery Electric Vehicles, Embedded Machine Learning, Lithium-Ion Battery Cell Modelling, Equivalent Circuit Model, Real-Time Voltage
Modelling €€€€,
”Abstract[swe]”: €€€€

Denna avhandling utforskar tillämpningen av maskininlärning för modellering av battericellsdynamik i
batteridrivna elfordon. Det primära målet är att utveckla och implementera maskininlärningsbaserade
modeller, som uppskattar terminalspänningen i litiumjonbattericeller i realtid på inbyggda system som
finns i batteridrivna fordon. Konventionella metoder, såsom ekvivalentkretsmodellen, har
begränsningar när det gäller att hantera de komplexa och dynamiska miljöer som finns i batteridrivna
fordon. Den här avhandlingen syftar till att förbättra dessa metoder genom att utnyttja möjligheterna
med maskininlärning i en inbäddad miljö.

Forskningen genomfördes i samarbete med Scania CV AB och använde data från deras batterilaboratorier
och elektriska lastbilar. Studien omfattade förbearbetning och så kallad \textit{feature engineering}
av data, följt av träning av olika maskininlärningsmodeller, inklusive feedforward neuronnät och long
short-term memory modeller. Dessa modeller genomgick träning och utvärdering baserat på data från
batteritester som utförts i laboratoriemiljö. De tränade maskininlärningsmodellerna anpassades sedan
för att köras på de inbyggda systemen i eldrivna lastbilar, med hänsyn tagen till den begränsade
beräkningskraften och minnesresurserna.

Båda modellerna utvärderades i en eldriven lastbil under körning, laddning och tomgångskörning. Long
short-term memory nätverket hade en bättre prestanda vid körning och tomgångskörning, medan
feedforward nätverket presterade bättre under laddningsscenariot. Dessa resultat är värdefulla
eftersom de visar att maskininlärningsmodeller är användbara för realtidsapplikationer i
batteridrivna elfordon. De visar också på ett lovande område för vidare forskning, särskilt för
batterikemikalier som inte enkelt kan modelleras med den ekvivalenta kretsmodellen, vilket banar väg
för mer intelligenta, säkra och effektiva batterihanteringslösningar i elfordon.

€€€€,
”Keywords[swe]”: €€€€
Elektriska Fordon, Inbyggd Maskininlärning, Litiumjonbattericeller Modellering, Ekvivalenta kretsmodell, Realtidsmodellering av Spänning
€€€€,
”Abstract[ger]”: €€€€

In dieser Arbeit wird die Anwendung des maschinellen Lernens zur Modellierung der Dynamik von
Batteriezellen in batteriebetriebenen Elektrofahrzeugen untersucht. Das Hauptziel ist die Entwicklung
und Implementierung von auf maschinellem Lernen basierenden Modellen, die die Klemmenspannung von
Lithium-Ionen-Batteriezellen in Echtzeit auf eingebetteten Systemen in batteriebetriebenen
Elektrofahrzeugen abbilden. Herkömmliche Methoden, wie das Ersatzschaltbildmodell, sind für die
komplexen und dynamischen Vorgänge in batteriebetriebenen Fahrzeugen nur bedingt geeignet. Diese
Arbeit zielt darauf ab, diese Methoden zu verbessern, indem die Möglichkeiten des maschinellen
Lernens in einer eingebetteten Umgebung genutzt werden.

Die Forschung wurde in Zusammenarbeit mit Scania CV AB durchgeführt, wobei Daten aus deren
Batterielabors und Elektro-LKWs verwendet wurden. Die Studie umfasste die Vorverarbeitung und das
Feature-Engineering der Daten, gefolgt vom Training verschiedener maschineller Lernmodelle,
einschließlich neuronaler Feedforward-Netzwerke und Long short-term Memory-Netzwerke. Diese Modelle
wurden anhand ihrer Effizienz bei der Interpretation von Daten aus Batterietests in einer
Laborumgebung trainiert und bewertet. Die trainierten maschinellen Lernmodelle wurden dann so
angepasst, dass sie auf den eingebetteten Systemen in Elektro-LKWs laufen, wobei die begrenzte
Rechenleistung und die Speicherressourcen berücksichtigt wurden.

Beide Modelle wurden in einem realen Elektro-Lkw während der Fahrt, beim Aufladen und im Leerlauf
getestet. Das Long short-term Memory-Netzwerke zeigte eine bessere Leistung während der Fahrt und im
Leerlauf, während das neuronale Feedforward-Netzwerk im Ladeszenario besser abschnitt. Diese
Ergebnisse sind wertvoll, da sie zeigen, dass Modelle des maschinellen Lernens für
Echtzeitanwendungen in batteriebetriebenen Elektrofahrzeugen geeignet sind. Darüber hinaus wird ein
vielversprechender Bereich für weitere Forschungen aufgezeigt, insbesondere für Batteriechemien, die
nicht ohne weiteres durch das Ersatzschaltbildmodell modelliert werden können, wodurch der Weg für
intelligentere, sicherere und effizientere Batteriemanagementlösungen in Elektrofahrzeugen geebnet
wird.

€€€€,
”Keywords[ger]”: €€€€
Elektrofahrzeuge, Eingebettetes maschinelles Lernen, Modellierung von Lithium-Ionen-Batteriezellen, Ersatzschaltungsmodell,
Echtzeit-Spannungsmodellierung €€€€,
}

acronyms.tex

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% The following command is used with glossaries-extra
\setabbreviationstyle[acronym]{long-short}
% The form of the entries in this file is \newacronym{label}{acronym}{phrase}
% or \newacronym[options]{label}{acronym}{phrase}
% see ”User Manual for glossaries.sty” for the details about the options, one example is shown below
% note the specification of the long form plural in the line below

\newacronym{KTH}{KTH}{KTH Royal Institute of Technology}
\newacronym{SDG}{SDG}{Sustainable Development Goal}
\newacronym{LSTM}{LSTM}{long short-term memory}
\newacronym{GRU}{GRU}{gated recurrent unit}
\newacronym{ML}{ML}{machine learning}
\newacronym{ECM}{ECM}{equivalent circuit model}
\newacronym{FFNN}{FFNN}{feedforward neural network}
\newacronym{SOC}{SOC}{state of charge}
\newacronym{SOH}{SOH}{state of health}
\newacronym{CPU}{CPU}{central processing unit}
\newacronym{GPU}{GPU}{graphics processing unit}
\newacronym{MSE}{MSE}{mean squared error}
\newacronym{MAE}{MAE}{mean absolute error}
\newacronym{ReLU}{ReLU}{rectified linear unit}
\newacronym{BEV}{BEV}{battery electric vehicle}
\newacronym{BMU}{BMU}{battery management unit}
\newacronym{ONNX}{ONNX}{Open Neural Network Exchange}
\newacronym{AMD}{AMD}{Advanced Micro Devices}
\newacronym{OCV}{OCV}{open circuit voltage}
\newacronym{RNN}{RNN}{recurrent neural network}
\newacronym{INCA}{INCA}{Integrated Calibration and Application Tool}
\newacronym{ISO}{ISO}{International Organisation for Standardisation}
\newacronym{IBM}{IBM}{International Business Machines Corporation}
\newacronym{RAM}{RAM}{random access memory}
\newacronym{ADAM}{ADAM}{Adaptive Moment Estimation}
\newacronym{MDA}{MDA}{Measure Data Analyser}

	Introduction
	Background
	Current methods

	Problem
	Original problem and definition

	Purpose
	Goals
	Research methodology
	Delimitations
	Structure of thesis

	Background
	Lithium-ion battery cells
	Cell chemistry
	Battery modelling
	Equivalent circuit model
	Internal resistance
	Transient behaviour
	Cell hysteresis

	Cell state estimation
	Direct estimation
	Book-keeping through Coulomb counting
	Adaptive book-keeping

	Electrochemical model

	Machine learning
	Feature engineering
	Long short-term memory models
	Gated recurrent unit

	Embedded systems in battery electric vehicles
	Functional safety
	Hardware specifications
	Embedded machine learning

	Related work
	Summary

	Methods
	Research Process
	Data collection
	Data features
	Data processing
	Time-delayed data
	Data derivatives
	Time sequences

	Model training
	Model evaluation criteria
	Training procedure

	Hardware testing
	INCA testing

	Driving test procedure
	Assessing reliability and validity of the data collected
	Validity of method
	Reliability of method
	Validity and reliability of data

	Planned data analysis
	Software tools

	Model Development
	Feature engineering
	Feature selection

	Model selection
	Model architecture
	Feedforward architecture
	Recurrent neural network architecture

	Effect of model size
	Hyper-parameters selection

	Model implementation
	Weights conversion
	FFNN implementation
	LSTM implementation

	Results and Analysis
	Lab data testing
	Model simulation
	PyTorch and C comparison

	Live model testing
	Test drive results
	FFNN test results
	LSTM test results

	Performance comparison
	CPU utilisation comparison

	Major results
	Discussion
	Test drive discussion
	CPU utilisation discussion

	Conclusions and Future work
	Conclusions
	Limitations
	Data limitations
	Data temporal resolution
	Data accuracy and precision
	Data generalisation
	Model initialisation

	Hardware limitations
	Truck availability

	Future work
	More extensive testing
	Accounting for battery health
	Alternative model targets
	Model initialisation
	Alternative machine learning models

	Ethical, societal, and sustainability considerations
	Ethical considerations
	UN sustainable development goals

	References
	Machine learning
	Perceptron
	Feedforward neural network
	Back propagation

	Recurrent neural network

	Detailed feature selection
	Model source code

