
Radiosity

Kjell Isak Nyberg

September 8, 2019

Abstract

In the modern day of image and video rendering the essential goal is to reach an image which resembles
reality as closely as possible. The search for rendering methods within the field of computer graphics
is very extensive and a large number of techniques have been invented. Global Illumination Algorithms
(GIA) are one of these techniques. GIAs works with the principle of indirect illuminations, incorporating
light reflections in the lighting of a render. Radiosity is one type of GIA and is capable of rendering
images which in some cases are indistinguishable from real life. This algorithm in particular will be
further explained and compared with other means of image rendering, both GIA and other families of
algorithms.

Keywords Radiosity, Global Illumination Algorithms, Ray Tracing, Form Factor, Adaptive Meshing

Contents

1 Introduction 2

2 Patches 2

3 Form Factor 3

4 The Radiosity Equation 5

5 Efficiency 5

6 Adaptive meshing 6

7 Limitations of Radiosity 7

8 Ray Tracing 7

9 Limitations of Ray Tracing 8

10 Ray Tracing and Radiosity 8

11 Conclusion 9

1

1 Introduction

The primary goal of image rendering has always been to create images which appear as realistic as possible.
One attempt to reach this achievement was the invention of Global Illumination Algorithms (GIA) which
includes algorithm such as radiosity and ray tracing. There are two main approaches to illumination within
the field of computer graphics: direct illumination and indirect illumination. Direct illumination mainly
concerns itself with light travelling directly from a light source, while indirect illumination also takes
the light reflected of all the surfaces in the scene into account. This results in that indirect illumination
is considered to be the superior when it comes to modelling realistic light behaviour. GIAs implement
indirect illumination as the name Global Illumination suggests.

While radiosity came about in the field of computer graphics in the year 1984, the same algorithm
had been used to model heat transfer in the field of thermodynamics many years before. This type of
modelling was directly applicable to computer rendering, as heat and light act interact with surfaces in
a very similar manner. [MFC86] The principle behind radiosity builds on there being a finite number of
surfaces within a scene and a known total amount of light let into the environment, for example a light
bulb with a known brightness. These surfaces are split into smaller patches that are allowed to reflect
light onto each other. This light is propagated until the sum of the light of all the patches approaches
the total amount of light initially let into scene.

2 Patches

As previously mentioned, the algorithm uses so called patches which are smaller sections of the surfaces
of the objects in the scene. It is assumed that every point within a single patch interacts with the rest of
the scene in the exact same way. Thus a midpoint is assigned to each patch that represents each point
within the patch. It is thus assumed that the amount of light incident on the midpoint is equal to the
amount on any other point in the patch. This reduces the computation needed.

Figure 1: Radiosity illustration. [AI13]

Figure 1 shows an environment with triangular patches in a room with a chair and a desk, that is
lit up by a light bulb. The light bulb introduces the initial light into the scene shown by the red arrow
coming out and hitting the different patches. These patches then reflect the light onto different patches
in the scene. Note that all arrows coming out of a patch are double headed as light is reflected between
the surfaces in both directions. With this approach, the light levels of a surface also becomes a property
of that surface, rather than a property of the viewing angle of the observer. As a result, radiosity is
viewpoint independent and the position of the observer does not affect the final outcome.

2

3 Form Factor

In simple, the form factor between two surfaces is the ratio of the light leaving one patch and arriving
at the other patch. This is vital as the diffusion of light is the key aspect of radiosity as an algorithm.
While this description is trivial to fathom, it is significantly harder to implement. Let the form factor of
light leaving patch i and arriving at patch j be represented by Fij and n be the number of patches in
a scene. The form factor makes use of the property that, in a closed scene, the sum of all form factors
leaving one patch is equal to 1. Which can be expressed as:

n∑
j=1

Fij = 1

The main properties that influence the form factor between two patches is the area of either patch, the
angle formed between the two patches, and lastly the distance between the two patches. The explanation
for this is quite trivial as a smaller area will have less light hitting it, two patches facing each other will
exchange more light than two patches facing away from each other, and the further away something is
the less light will reach the surface. [CG85]

(a) Nusselt Analogue Hemisphere (b) Patches with Equal Form Factors

Figure 2: Form factor Hemisphere implementation [CG85]

These properties are all accounted for in the Nusselt Analogue, illustrated in figure 2 part a. This
Analogue works by placing a unit hemisphere centred around the viewpoint. The patch is now projected
onto the surface of the hemisphere, the hemisphere then in turn projects the same surface down onto the
base of the hemisphere. Finally the form factor is equal to the area for the projection on the hemisphere
base divided by the total area of the hemisphere’s base. For the case of radiosity this is a simplified
model of the Analogue, real implementations are different for efficiency. As shown in figure 2 part b,
different patches may have the same form factor while being different in size, distance and orientation
with relation to the viewpoint. This property of the hemisphere is used to improve the efficiency of the
form factor calculation by creating a so-called hemicube

3

Figure 3: Hemicube [CG85]

Figure 3 provides a view of a so called hemicube which is constructed by placing a cube with its centre
on the viewing point. The surfaces of the sides of the cube are divided into smaller discrete areas referred
to as pixels. The form factor of each pixel is already pre-calculated. This means that rather than using
the Nusselt analogue from figure 3, all the program has to do is to sum the form factors of each pixel that
is projected onto. Like the number of patches, the size and number of pixels on the hemicube heavily
influences the final outcome of the form factor. [CG85]

Figure 4: Hemicube Aliasing [RH90]

A major drawback of quantizing the surface of the hemisphere is the treatment of edge cases. Figure 4
gives an example of both over-, and underestimates. In figure 4 the light grey area is the actual image
incident on the hemicube and the black is the pixels that are responding. The former side showcases a
scenario in which the projection is overestimated as all four pixels are responding despite none of them
being entirely filled up. This causes the projection to appear larger than initially intended. Similarly, in
the latter side of the figure, the size of the projection is decreased due to the pixel being smaller than the
projection resulting in that the projection becomes smaller despite the surrounding pixels being partially
filled up. This problem can be tackled similar to pixels in a normal computer screen, where decreasing
the size of the individual pixels while increasing the number of pixels the projections would fit better
by minimizing these rounding errors. The major drawback is that increasing the number of pixels also
increases the computation needed to find the final projection. Hence the amount of computing needed
must be balanced with the necessity to approximate the form factor appropriately.

4

4 The Radiosity Equation

In a scene, the radiosity of a patch is given by the total light or illumination of a patch divided by the area
of the patch. This can be computed by finding the sum of the direct and indirect illumination incident
on the patch’s surface and the light emitted by the surface itself. The self-emitted light is already a
property of the surface. Let this value be assigned to the variable E for emission. Finding illumination
incident on the paths’ surface from other sources is a greater challenge and is quintessential to radiosity.
As mentioned previously, the radiosity algorithm takes the diffusion of all other patches into account
when calculating the final radiosity of a patch. This is done by first finding the radiosity of a different
patch and multiplying that by the form-factor. Let the radiosity of a surface j be Bj and the form-factor
of patch j to patch i be F ji. This needs to be calculated for each patch in the scene since they all diffuse
light, let n represent the number of patches in the scene. Hence the indirect illumination can be expressed
as the sum of the product of the radiosity and form-factor of each other surface in the scene, lastly this
sum needs to be multiplied by the reflectivity of the patch denoted by ρ. With all this in mind, the
radiosity of patch i (Ri) can be mathematically expressed as:

Ri = ρi

n∑
j=1

BjFij

After adding direct incident light, the final radiosity at patch i is: [MFC98]

Bi = Ei +Ri = Ei + ρi

n∑
j=1

BjFij

The problem with this formula is that in order to figure out the radiosity of one patch, you need to
know the radiosity of a different patch, presenting a catch-22 situation. The way to get around this is
to reconfigure the equation into the matrix form and calculate the final radiosity of all patches using
the Gaussian Elimination algorithm, where B1 to Bn are the unknowns, and the remaining variables are
known. 

1 − ρ1F11 −ρ1F12 −ρ1F1n

−ρ2F21 1 − ρ2F22 −ρ2F2n

...
. . .

...
−ρiFi1 1 − ρiFii −ρiFin

...
. . .

...
−ρnFn1 1 − ρnFnn





B1

B2

...
Bi

...
Bn


=



E1

E2

...
Ei

...
En


5 Efficiency

With the above equation in mind, it is easy to deduce that the radiosity algorithm has a complexity of
O(n3) where n is the number of patches in the scene. This comes from the complexity of the Gaussian
algorithm. In addition to a bad runtime, the space complexity also proportional to O(n2). While modern
implementations have come with clever improvements to the algorithm, working the storage efficiency
down to O(n). [MFC98] This complexity being proportional to the number of patches creates a big
problem for generating larger scenes, this makes it important to select the patches efficiently because
otherwise the complexities of the scenes rise extremely fast. This is where techniques such as Adaptive
meshing become a vital improvement to the Radiosity.

5

6 Adaptive meshing

With a complexity of O(n3) is it very apparent that using an excessive number of patches will drastically
worsen the performance of the algorithm. The most simple approach would be to divide the scene up
evenly with evenly spaced and sized patches.

Figure 5: Non-adaptive Meshing [Lig]

This approach is portrayed in figure 5. The left portrays a scene of a light source directed at a canvas
with a grid-type mesh superimposed on the canvas surface. The right shows the final render of the same
scene with the given patch mesh. It is very evident that the final product does not quite resemble the
desired outcome with very jagged edges to the point of the circular shape not appearing circular at all.
These pixel like shapes are called artifacts. [Lig] Needless to state, these artifacts are not desired. One
solution could simply be to make the patches smaller, decreasing the size of the artifacts overall. How-
ever this would also result in that the number of patches would also increase, and as stated previously
with a complexity of O(n3), that simply would just render the extra computation needed supererogatory.
Instead, a clever way of circumventing this problem is the use of adaptive meshing.

Figure 6: Adaptive Meshing [Lig]

Figure 6 is the same scenario as figure 5, however this time the mesh is different. The way adaptive
meshing works is that rather than assigning an arbitrary number and size to the patches, the patches
are assigned by finding the areas with similar radiosity levels and combining them into bigger patches,
as seen on the outer most patches on the canvas on the left hand side. Likewise the patches that are
subject to a steeper change of radiosity are made smaller in order to preserve detail. The efficiency of
this strategy is very apparent on the right hand side render where in contrast to figure 5 the light shone
onto the canvas is clearly rounder and the artifacts are far less conspicuous. Adaptive meshing enables
the complexity to be allocated efficiently to the areas where it is needed.

6

7 Limitations of Radiosity

While radiosity is great for diffusing light, it has a number of limitations. As previously mentioned, the
radiosity algorithm is based on thermal physics and modelling. This means that a major assumption is
that the reflection of light follows a so called Lambert Reflection. This means that the light incident
on a surface is redirected in all directions. This is great for rough surfaces such as walls of a room,
however when it comes to glossy and reflective surfaces this assumption falls apart. A mirror for example
is expected to only reflect light in a way so that the image emitted onto the mirror can be recaptured
after being reflected. However radiosity bleeds and diffuses the light together from all angles, making it
impossible to model a mirror-like reflection without additional implementations. In addition transparent
surfaces are troublesome to model as the reflectivity of most transparent surfaces such as glass is very
high, causing the light to go lost despite it propagating through the object. For example a render of a
kitchen with lots of shiny surfaces such as a counter and reflective object like knives and trays will not
have its features accurately portrayed. [HER90] While there are implementations of radiosity that make
an attempt to accurately solve these problems, a better rendering method for this scenario would be ray
tracing.

8 Ray Tracing

Ray tracing is a different GIA that primarily focuses on specular light rather than diffuse light. Ray
tracing also only considers the light arriving at the viewer instead of the light arriving the surfaces of the
scene. This is done by casting a ray through each pixel from the viewers perspective and letting this ray
propagate through the scene, by either reflecting off object or propagation through objects. This gives
the advantage of not having to deal with discrete sampling of an objects surface and also allowing the
user to create images with realistic reflections and transparent objects. This proposes a solution for the
already mentioned problem with radiosity. Ray tracing can also be used in conjunction with radiosity to
minimize the artifacts that appear around edges of objects. [Lig]

Figure 7: Ray Tracing Render [Tra09]

Figure 7 is a perfect example of a render using ray tracing. The image features all kinds of complex
lighting conditions of reflections, transparent and translucent and also glossy surfaces. While this scene
would be a much greater challenge for a radiosity algorithm to render, ray tracing is very good at
portraying this scene with incredible realism.

7

9 Limitations of Ray Tracing

Like radiosity, there are also some scenes that ray tracing does not preform as well, in particular scenes
with a lot of diffuse light. This resulted in that so-called colour bleed cannot be modelled accurately.
Colour bleed is when the colour of objects diffuses or spreads onto other surfaces in the scene. This can
cause the shapes and objects in the scene to appear unusually sharp. In addition, while being computer
intensive, ray tracing is also perspective dependent meaning that every time the viewing position and
angle is altered the entire image needs to be rendered again. [Tob97]

10 Ray Tracing and Radiosity

Ray tracing and radiosity are quite fundamentally opposite in a way. While both are GIAs the way
they render a scene is severely different. The fist difference between the two is the interpretation of light
reflection.

Figure 8: Diffuse and Specular light [Vir]

Figure 8 illustrates the key difference in light reflection between radiosity and ray tracing. The left
hand side shows show specular light reflects while the right hand side shows diffuse light reflections. As
previously written ray tracing uses specular reflection, the angle if incidence is assumed to be equal to the
angle of reflection, which means that the image inbound to the surface will closely resemble the outbound
(reflected) image. As shown in figure 8 this causes the surface to appear more reflective. Radiosity on
the contrary uses diffuse reflections, which means that the incident light is scattered in all directions
while also diffusing with the surfaces’ light. This gives the surface colour while also propagating light
everywhere else in the scene. In figure 8 is is to note that the right image reflects more red light than
was incident on the surface. This results in the surface looking more matte and also causes in this case
that the red light will diffuse and bleed to other surfaces in the scene.

Figure 9: Same Scene with Different Renders [Tob97]

Figure 9 is another comparison of radiosity and ray tracing by placing the render of the same image
side by side. The left render is the radiosity render and the right one is the ray tracing render. In the
radiosity render it is easy to identify the characteristic colour bleeding of the green snookers table onto
the ceiling causing the green tint. The shadow of the table is also very gradual and smooth, and the
shadow cast by the door onto the back wall is barely visible at all.

8

The ray tracing render on the right side is noticeably different. The shadows are incredibly sharp and
the light emitted from the ceiling light is chalk-white. There is absolutely no colour bleed of the snookers
table and the colour green is not present anywhere else than the pool table. Lastly the most important
feature seen is the reflection of the back door onto the floor. The floor looks very polished and reflec-
tive in the ray tracing render. Figure 9 should be enough for anyone to conclude the vast difference in
appearance of ray tracing and radiosity. However deciding between the two can be a challenge as they
deal with different environments with vastly differences. The example from figure 7 does present a very
good ray tracing render. However a scene is not going to have the render method in mind when it is
constructed, that would limit the whole purpose of creating realistic images when the user is restricted
on which lights and surfaces are allowed in the scene to cater to the strengths of an algorithm. This is
when combined rendering comes into play.

Figure 10: Combined rendering [Tob97]

Figure 10 has introduced a so-called combined render in the central image. This render uses a
combined render of radiosity and ray tracing. This method takes advantage of the fact that the two
algorithms are so opposite in their ideal environments. For example, the colour bleed on the ceiling which
originates from the radiosity render which was not produced by the ray tracing can be incorporated with
the reflective floor which originates from the ray tracing render. This creates a combined render which
looks superior to either individual render. The combined method can also improve the artifacts after the
adaptive meshing of the radiosity algorithm.

11 Conclusion

Radiosity is a rendering algorithm that divides a scene’s surfaces into so-called patches and then letting
light diffuse over all surfaces in the environment with a complexity of O(n3), where n is the number of
patches. The algorithm is viewpoint independent and once a scene has been rendered it can be viewed from
any angle in the scene without needing to re-render the scene. Radiosity excels at modelling environments
with matte surfaces that diffuse a lot of light, while it struggles with reflective or transparent surfaces.
Ray tracing is another rendering algorithm that works by tracing the light from the viewer to a light
source by reflecting a ray though the environment. In contrast to radiosity it is not viewpoint independent
and needs to be rendered every time the perspective changes. Ray tracing cannot model diffuse light very
well, but on the other hand is very effective at rendering transparent and reflective surfaces.
The two algorithms can be combined to make a rendering algorithm that plays at the strengths of both
algorithms in order to make a multi functional rendering algorithm.

9

References

[AI13] Mette Hvass Michael Jørgensen Jens Christoffersen Werner Osterhaus Kjeld Johnsen Anne
Iversen Nicolas Roy. Daylight calculations in practice. English. Version 1. DANISH BUILDING
RESEARCH INSTITUTE. 2013. 1 p. 2013.

[CG85] Michael F. Cohen and Donald P. Greenberg. “The hemi-cube: a radiosity solution for complex
environments”. In: SIGGRAPH. 1985. doi: 10.1145/325334.325171. url: http://doi.acm.
org/10.1145/1671970.1921702.

[HER90] Kenneth E. Torrance Holly E. Rushmeier. “Extending the Radiosity Method to Include Spec-
ularly Reflecting and Translucent Materials”. In: ACM transactions on graphics 9 (1990).

[Lig] Lightscape User’s Guide. English. Version 1.0. Autodesk, Inc. 1999. 1 p. April, 1999.

[MFC86] David S. Immel Philip J. Brock Michael F. Cohen Donald P. Greenberg.“An Efficient Radiosity
Approach for Realistic Image Synthesi”. In: ComputerGraphics (1986).

[MFC98] John R. Wallace Donald P. Greenberg Michael F. Cohen Shenchang Eric Chen. “A Progressive
Refinement Approach to Fast Radiosity Image Generation”. In: ComputerGraphics 22 (1998).

[RH90] Joanne Ng Rik Harris A. Marriott. CG351-551 Radiosity: Concerning Form Factor. 1990.

[Vir] The Role Of Reflectivity In Glass Selection. English. [Online; accessed 27, July, 2019]. Viracon,
2012. url: https://www.viracon.com/pdf/TTReflectivity.pdf. 2012.

[Tob97] Robert F Tobler. Radiosity - Ray Tracing. 1997.

[Tra09] Gilles Tran. Glasses, pitcher, ashtray and dice. [Online; accessed 27, July, 2019]. 2009. url:
http://www.oyonale.com/images/3D/glasses.jpg.

10

https://doi.org/10.1145/325334.325171
http://doi.acm.org/10.1145/1671970.1921702
http://doi.acm.org/10.1145/1671970.1921702
https://www.viracon.com/pdf/TTReflectivity.pdf
http://www.oyonale.com/images/3D/glasses.jpg

	Introduction
	Patches
	Form Factor
	The Radiosity Equation
	Efficiency
	Adaptive meshing
	Limitations of Radiosity
	Ray Tracing
	Limitations of Ray Tracing
	Ray Tracing and Radiosity
	Conclusion

