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1 Introduction

Travelling salesperson problem is a famous NP-hard problem. Basically, it can be described as given a
list of cities and the distances between each city, how to find a minimum cycle that visits each city exactly
once and goes back to the starting city.

In this project, we applied Christofides algorithm to find an initial tour. After that, optimizations like
2-opt and 3-opt are adopted to increase the performance. Finally, we can achieve a 41.2 on Kattis.

2 Global Optimization (score: 5)

In [1], four heuristics are put forward to solve TSP problem, which are Nearest neighbor, Greedy, Clarke-
Wright and Christofides respectively. Christofides is an algorithm within 1.5-approximation in polynomial
time while others have much worse performances. Christofides has running time O(n3) and it is not too bad
compared with other heuristics. Therefore, we choose Christofides as our implementation.

Basically, Christofides can be divided into the following parts [2]. First, it finds the minimum spanning
tree T of the graph G. Second, it finds the vertices that have odd degree in the minimum spanning tree
(MST). Third, it finds a perfect matching M of these odd vertices. Fourth, it combines T and M together
to form a new graph G

0 where each vertex has even degree. Fifth, it finds an Eulerian path in G
0. Sixth,

it finds a Hamiltonian path, which is the result, from the Eulerian path. The following figure (Figure 1)
illustrates the whole process.
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(a) Original Graph (b) MST (c) Odd Vertices

(d) Perfect Matching (e) Each Vertex with Even De-
gree

(f) Eulerian Path

(g) Hamiltonian Path

Figure 1: Christofides Algorithm [3]

2.1 Minimum Spanning Tree

There are two famous algorithms for constructing a minimum spanning tree: Kruskal’s algorithm and
Prim’s algorithm [4]. Both of them take a greedy approach. Kruskal’s algorithm adds edges one by one with
least weight in each iteration till a spanning tree is formed. In dense graphs, the number of edges is very
high, and Kruskal’s algorithm may not perform well. Therefore, we choose to use Prim’s algorithm.

We use n to denote the number of vertices in this graph. We use three arrays (used, parent and key)
to maintain the information needed. “used” is initialized with 0 as every vetex is not used now. “parent”
is initialized with 0 as the parent of each vertex is unknown. But parent[0] = �1 as the first vertex has no
parent. “key” is initialized with MAX as we don’t know the minimum weight between MST and each vertex.
But key[0] = 0 as the first vertex will be added to the MST.

Then we find a not used vertex (idx) that is closest to the MST and add it to the MST. For each not
used vertex (j) that has connection with idx, we judge whether it is colser to the MST after adding idx
to the MST. If yes, we update the parent of j (parent[j]) and the minimum weight (key[j]) between j and
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MST. We repeat this process again and again until all the vertices are in the MST. With the parent of each
vertex, we can easily construct a MST.

Algorithm 1 Prim’s algorithm

1: used  [0, ..., 0] // array of size n to store whether one vertex is in MST or not
2: parent  [�1, 0, ..., 0] // array of size n to store the parent of this vertex
3: key  [0,MAX, ...,MAX] // array of size n to store minimum weight between this vertex and MST
4: for i = 0 to n� 2 do

5: idx  a neareset neighbor of MST that has not been used
6: used[idx]  1 // mark it as used
7: for j = 0 to n� 1 do

8: if j is not idx and j is not used and the distance between idx and j is smaller than key[j] then
9: parent[j] = idx // update the parent of j

10: key[j] = the distance between idx and j // update the minimum weight between j and MST
11: end if

12: end for

13: end for

2.2 Odd Vertices

With the parent of each vertex, we can construct a data structure “vector<vector<int>> neighbors”
in C++ to store the adjacent vertices to the current vertex i in the MST, e.g., neighbors[i] contains the
adjacent vertices to i. Then, we can go through each vertex i to get the size of neighbors[i]. If it is odd,
then vertex i is an odd vertex.

2.3 Perfect Matching

For perfect matching, we also take a greedy approach. We use n to denote the number of odd vertices
(n is always even according to [2]). Starting from the first odd vertex x1, we go through the other not used
odd vertices to find the closest one, e.g. vertex x2. Then standing at x2, we find the next not used closest
vertex x3. If we do this until all the vertices are used, we can get an array [x1, x2, ..., xn]. Finally, we can
make pairs like (x1, x2), (x3, x4), ..., (xn�1, xn).

Algorithm 2 Perfect matching

1: odd // array of size n for storing the odd vertices
2: used  [1, 0, ..., 0] // array of size n to store whether this odd vertex is used or not. We start from the

first one, so it is marked as used.
3: tour  [odd[0],0,...,0] // array of size n to store the sequence, the first vertex will be placed in it before

starting.
4: for i = 1 to n� 1 do

5: temp  �1 // vaule for odd vertex
6: idx  �1 // vaule for the index of the odd vertex in array odd

7: for j = 0 to n� 1 do

8: if used[j] == 0 and (temp = �1 or distance between odd[j] and tour[i � 1] < distance between
temp and tour[i� 1]) then

9: temp  odd[j] // update the temp by currently nearest vertex
10: idx  j // update the idx by the index of currently nearest vertex in array odd

11: end if

12: end for

13: tour[i]  odd[j] // odd[j] is placed into array tour

14: used[j]  1 // j becomes used now
15: end for

16: return constructed pairs based on tour
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2.4 Creating a New Graph

With the pairs from section 2.3, one can update the neighbors in section 2.2 by just pushing new
adjacent vertices back to neighbors accordingly.

2.5 Eulerian Path

After creating the new graph, each vertex should have even degree by now, so an Eulerian path should
exist. In an undirected graph, Eulerian is a walk that uses each edge exactly once [5]. Therefore, a depth-first
search (DFS) algorithm will be of help when finding such a path.

First, “map<pair<int, int>, int> edge” is created to store the number of each edge. Then we start
from one vertex and do DFS to find the Eulerian path. For each DFS iteration, if the number of edge is >
0, we can continue from the other vertex of the edge and decrease the corresponding edge number. We do
this until all the edges have number 0.

Algorithm 3 DFS

1: edge  a map that stores the number of each edge // Note: (i, j) and (j, i) are treated as di↵erent
edges as pair is order-sensitive.

2: neighbors the updated neighbors in section 2.4
Input: x // a vertex to start the DFS
Output: ans // an array that returns the order of visiting
3: for each i in neighbors[x] do
4: if number of edge(i, x) is > 0 then

5: decrease the number of edge(i, x) and edge(x, i)
6: DFS(i) // continue DFS starting from i

7: end if

8: end for

9: ans.push back(x)

2.6 Hamiltonian Path

Eulerian path may visit one vertex several times as it covers all edges. In this part, we generally remove
this repition so that each vertex will be visited only once. And we can start from the back of Eulerian path
as “vector<int>” in C++ supports “pop back()”. We also maintain an array that stores whether it is visited
for each vertex.

We just go through the Eulerian path from back to front. For each vertex, if it is not visited before, we
put in ans until we have exhausted Eulerian path.

Algorithm 4 Hamiltonian

Input: eulerPath

Output: ans: Hamiltonian path
1: used [0, ..., 0] // all vertices are currently unvisited
2: while eulerPath is not empty do

3: cur  back of eulerPath
4: if cur not visited then

5: ans.push back(cur)
6: mark cur as visited
7: end if

8: eulerPath.pop back()
9: end while

4



.

3 Local Optimization

3.1 2-OPT (Score: 23)

The basic idea of two opt is that two edges in the path are removed to create two disjoint paths, the
two paths are then reconstructed in a way such that the two new edges that are added will have the smallest
total length.
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In the example above, the could would calculate the following lengths (c, d), (c, n), (n, o), (d, o) and if
|(c, n)|+ |(d, o)| < |(c, d)|+ |(n, o)| it would mean that a unit of length would be saved if the alternative right
hand path was used instead and thus the two paths could be replaced accordingly. It is also important to
note that after these edges are changed, each of the edges (n,m), (m, l), . . . , (e, d) would need to be reversed
in order to still keep the direction correct. To run this algorithm the following code was used: [6]

1 i n t opt2 ( shor t path [ ] , shor t N) {
2 i n t improvement = 0 ;
3 f o r ( shor t i =0; i < N−1; i++) {
4 i n t a = DISTANCE( path [ i ] , path [ i +1]) ; // c−>d
5

6 f o r ( i n t j=i +2; j < N−1; j++) {
7 i n t b = DISTANCE( path [ j ] , path [ j +1]) ; // n−>o
8

9 i n t c = DISTANCE( path [ i ] , path [ j ] ) ; // c−>n
10 i n t d = DISTANCE( path [ i +1] , path [ j +1]) ; // d−>o
11

12 i n t o r i g i n a l d i s t = a + b ; // c−>d + n−>o
13 i n t new dis t = c + d ; // c−>n + d−>o
14

15 i f ( o r i g i n a l d i s t > new dis t ) {
16 r e v e r s e ( path , i +1, j , N) ;
17 a = DISTANCE( path [ i ] , path [ i +1]) ;
18 improvement += o r i g i n a l d i s t − new dis t ;
19 }
20 }
21 }
22 r e turn improvement ;
23 }

From the two for loops it is evident that the code will run in O(n2) time, which still is not great but
since the number of vertices in the graph is limited to 1000 each run will at most take, 1 000 000 iterations.
In this case the variable i would represent the vertex c and the variable j would be vertex d. Similarly to
how we then calculate the distances in the example we find the distance with respect to i+ 1 and j + 1 and
reverse parts of the path accordingly. It is also important that the improvement is kept track of since it can
easily be calculated and returned to keep track of the overall length of the path, instead of having to check
for it linearly every time, this is important later. Some improvements were also made to start the variable i

to skip some values depending on where we are aware of changes. This function would be run multiple times
until the improvements would reach 0. In the end we reached a score of about 23 with this code.
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3.2 Avoiding Local Minima (Score: 41)

After a few iterations of 2-OPT the length of the path would stop improving and the function would
return 0. This would indicate that the path had reached a local minima and that 2-OPT was no longer
su�cient to improve the path any further. Some experiments were done with the so called 3-OPT algorithm,
however due to 3-OPT having a complexity of O(n3) and in our experimentation did not yield enough
improvements to justify the time taken we used a di↵erent approach. Instead of improving the graph any
further we did random shu✏ing to the path, making the path longer temporarily with the hope that further
usage of 2-OPT on this scrambled graph would give a better optimization than before. As trivial as this
sounds it played a key part in obtaining a score above 40.
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In the example above the edge from b to c and d to e are replaced with b to d and c to e. The edge c to
d is also reversed. While this seems like it would be a lot of operations, in reality the only di↵erence is that
the position in the path of c and d are swapped. This can be seen in the following code.

1 i n t smal l change ( i n t path [ ] , i n t N) {
2 i n t pa th d i s t change = 0 ;
3 shor t num changes = in t (N ∗ 0 . 5 ) ;
4 f o r ( shor t i = 0 ; i < num changes ; i++) {
5 shor t r = ( rand ( ) % (N−3) ) + 1 ;
6 i n t o l d edg e l eng th = DISTANCE( path [ r −1] , path [ r ] ) + DISTANCE( path [ r +1] , path [ r +2]) ;
7 i n t new edge length = DISTANCE( path [ r −1] , path [ r +1]) + DISTANCE( path [ r ] , path [ r +2]) ;
8 path d i s t change += new edge length − o l d edg e l eng th ;
9

10 // switch p l a c e s o f r and r+1
11 shor t temp = path [ r ] ;
12 path [ r ] = path [ r +1] ;
13 path [ r+1] = temp ;
14 }
15 r e turn path d i s t change ;
16 }

This combined with the 2-OPT algorithm lead to the following main-loop, reserved for small optimiza-
tions.

1 // path i s an array o f c i t i e s
2 // pa th d i s t i s the cur rent l ength o f path in terms o f d i s t anc e
3 whi le ( c l o ck ( ) < DEADLINE) {
4 i n t improvement = opt2 ( path , N) ;
5 pa th d i s t −= improvement ;
6

7 i f ( improvement == 0) {
8 i n t change = smal l change ( path , N) ;
9 pa th d i s t += change ;

10 }
11 }

Running the code, the impact of the random shu✏e is quite substantial. In the real example there is a
number of minor optimization in terms of the number of shu✏es but the code examples provide the essence
of what the code does.
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The graph above shows the length of the current path at the end of each loop in the main-loop as a
multiple the best path found at the end. The graph only shows the first 50 loops but in reality within the
2 seconds time limit the loop actually runs upwards of 300 times. The green line is the result of running
2-OPT until there is no further improvement, while the purple line shu✏es the path slightly when 2-OPT
returns 0 and then runs 2-OPT again. It is obvious that the path becomes a lot worse initially going up to
1.5 times the length of the best path found, however when it eventually plateaus again it sometimes finds
an even shorter path than before due to the added randomization. This means we can successfully avoid
getting stuck in local minima. At the end of every loop if a shorter path is found, it is saved and eventually
the best path will be printed out when the time is up.

3.3 Conclusion

After a lot of experimentation with more complex ways of finding ways of reorganizing and try to find
rearrangements to the path, the most impact was to simply ignore the complex algorithms in favours of the
much faster 2-OPT combined with randomization.
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